
Fast-track Python

Sample manual - first two chapters

Manual 1335 - 210 pages –

TABLE OF CONTENTS (1 of 7)

© Copyright 2025 Page 2

1 GETTING STARTED Page

1.1 Introducing Python 9

 Installing Python 9

1.2 Choosing an Editor 10

 Choices of Editor 10

1.3 Using IDLE 10

 Running Single Commands (Interactive
Mode)

11

 Colour-Coding / Case Sensitivity 11
 Creating, Saving and Running Programs 12

2 BASIC CODING Page

2.1 Comments 13

 Single-line Comments 13
 Multi-line Comments 13
 Commenting Out Lines (and

Uncommenting)
13

2.2 Variables 13

 Declaring Variables 14
 Variable Types 15
 Determining Type 15
 Assigning Values to Variables 16
 Deleting Variables 16

2.3 Rules of Arithmetic 17

2.4 Basic Strings 18

 New Lines and Tabs 18
 Quotation Marks 18
 Backslash Characters 18
 Concatenating Text 19
 Converting Numbers to Text 19
 Getting Inputs from Users 19

2.5 Testing Conditions 20

 Simple Conditions 20
 Multiple Conditions 20
 Testing for Equality 21
 Combining and Negating Conditions 21

3 VISUAL STUDIO CODE Page

3.1 Installing Visual Studio Code 22

3.2 The Visual Studio Code Window 23

 The Activity Bar 23
 Changing your Theme 23

3.3 Installing Extensions 24

 Installing Extensions (using Python as an
Example)

24

3.4 Using Terminal Window 25

 Viewing Terminal Windows 25
 Interactive Python Sessions 25

3.5 Configuring VS Code Settings 26

 Changing Settings using The Command
Palette

26

 Changing Settings using the Menu 26
 Using Settings (JSON) 27
 Automatically Showing Default Settings 27
 Copying Default Settings to Customise

Them
28

 Typical Default Settings 28

3.6 Other Useful VS Code Tips 29

 Commenting and Uncommenting Code 29
 Using Multiple Insertion Points 29
 Global Changes using Multiple Insertion

Points
30

 Entering and Leaving Zen Mode 30
 Expanding and Collapsing Code 31
 Restoring Default Zoom 31

4 WRITING AND RUNNING

PROGRAMS
Page

4.1 Files and Folders 32

 Opening a Folder 32
 Creating Python Files 32

4.2 Running Programs 33

 Clearing the Terminal Window 33
 Three Ways to Run a Program 33

4.3 Basic Debugging 34

 Setting and Unsetting Breakpoints 34
 Debugging 34

4.4 Terminal Input (Revisited) 35

4.5 The Code Runner Extension 36

 Installing the Extension 36
 Running Programs 36
 Changing the Run Key Combination 37
 Customising Code Runner 38

TABLE OF CONTENTS (2 of 7)

© Copyright 2025 Page 3

5 VIRTUAL ENVIRONMENTS Page

5.1 What Virtual Environments Are 39

5.2 Creating a Virtual Environment 40

 Creating and Opening a Folder 40
 Creating a Virtual Environment 41
 Structure of a Virtual Environment 41
 Activating a Virtual Environment 42
 Selecting an Interpreter 43

6 IMPORTING MODULES Page

6.1 Importing Modules 44

 Importing a Module 44
 Giving Modules Aliases 45
 Importing Specific Functions 45
 Importing Functions and Using Aliases 45

6.2 Some Useful Built-In Modules 46

6.3 Using External Modules 47

 Installing a Module 47
 Using Installed Modules 48
 Module Not Found Error 48
 Listing External Modules 48
 Viewing External Modules 49

7 FORMATTING TEXT AND NUMBERS Page

7.1 Basic Ways to Format Output 50

 Using the F Prefix 50
 Using the Format Function 51
 Placeholder Order can Vary or be Omitted 51

7.2 Formatting Numbers 52

8 RANGES AND LOOPS Page

8.1 While Loops 53

 Syntax of the While Command 53
 Example of a While Loop 54
 Using Else with While 54

8.2 Break, Continue and Pass 55

8.3 For Loops 56

8.4 Ranges 57

9 DEBUGGING Page

9.1 Overview 58

9.2 Preparing to Debug 59

 Step 1 – Creating a Configuration File 59
 Step 2 - Setting a Breakpoint 60
 Step 3 – Turning off the JustMyCode Flag 60

9.3 Debugging 61

9.4 Viewing and/or Changing Variable
Values

62

 The Variables Pane 62
 Watching Variables and Expressions 62
 The Debug Console 63

9.5 Breakpoints 64

 Conditional Breakpoints 64
 Disabling Breakpoints 65
 Deleting Breakpoints 65
 Removing or Disabling All Breakpoints 65

9.6 Debugging Function Calls 66

 Stepping Into, Over and Out of Functions 66
 The Call Stack 67
 Function Breakpoints 67

9.7 Logging Breakpoints 68

TABLE OF CONTENTS (3 of 7)

© Copyright 2025 Page 4

10 SEQUENCES Page

10.1 Introduction to Sequences 69

 Main Types of Sequences in Python 69
 Reminder of Iterating Over Sequences 69

10.2 Tuples versus Lists 70

 Mutability (Lists versus Tuples) 70

10.3 Slicing Sequences 71

 Examples of Slicing for Lists 71
 Examples of Slicing for Ranges 72
 Examples of Slicing for Strings 72
 Missing Items when Slicing (Step Values) 73

10.4 Joining and Splitting Sequences 74

 Joining Sequences Together 74
 Concatenating Sequence Members 74
 Splitting Strings to Generate Sequences 75
 Splitting a String into Before and After

Text
75

10.5 Unpacking Sequences 76

10.6 Working with Sequences 77

 Getting the Length of a Sequence 77
 Getting the Number of Items of a Specific

Value
77

 Aggregating a Sequence’s Items 77
 Getting the Index Number of an Item 78
 Returning Sequence Index Numbers and

Values
78

 Mixing Data Types 79

10.7 Examples of Sequences 80

 Listing the Files in a Folder (ListDir) 80
 Listing the Files in a Folder using Glob 80
 Dividing Text into Lists of Words or

Phrases
81

 A Tuple Listing Built-In Module Names 81
 Scraping Websites for Links 82

11 MANIPULATING LISTS Page

11.1 Adding and Removing Items 83

 Inserting Items 83
 Appending to and Extending Lists 84
 Removing Items from Lists by Value 84
 Popping Items from a List by Position 85
 Clearing the Contents of Lists 85

11.2 Changing the Order of Lists 86

 Sorting Lists 86
 Reversing Lists 86

11.3 Shallow and Deep Copying of Lists 87

 Assigning is not Copying 87
 Shallow Copying 87
 Deep Copying 88

12 COMPREHENSIONS AND

GENERATORS
Page

12.1 Comprehensions 89

 Basic Comprehensions 89
 Comprehensions with Conditions 90
 Multiple Loops within Comprehensions 90

12.2 Generators 91

 Disadvantages of Generators 91

13 FILES AND FOLDERS Page

13.1 Writing to Text Files 92

13.2 Using With to Close Files
Automatically

93

13.3 Reading Files 94

 Checking if Files and Folders Exist 94
 Reading Line by Line or Reading

Characters
94

 Reading All the Lines in a File using
Readlines

95

 Reading All the Lines in a File by Looping 95

13.4 Looping Over Files 96

 Looping Over Files in a Folder 96
 Processing Files in a Folder 97
 Looping Recursively 97

14 ERROR-HANDLING Page

14.1 Trapping for Errors 98

 Error Types 98
 Trapping General Errors 98
 Trapping Specific Errors 99
 The Full Range of Commands 99

14.2 Raising Exceptions 100

TABLE OF CONTENTS (4 of 7)

© Copyright 2025 Page 5

15 NUMBERS, STRINGS AND DATES Page

15.1 Overview 101

15.2 Working with Numbers 102

 Mathematical Operators 102
 Built-in Numerical Functions 102
 Math Functions 103

15.3 Working with Boolean Values 104

 Boolean Operators 104
 All and Any 104

15.4 Working with Dates (and Times) 105

 Getting Dates (and Times) 105
 Formatting Dates 106
 Formatting Times 106
 Displaying Calendar Months 107
 Displaying Day and Month Names 107

15.5 Working with Strings 108

 Escape Characters 108
 Avoiding Escape Characters 108
 Joining and Splitting Text 109
 Repeating Text 109
 Extracting Text (Slicing) 109
 Counting and Length 110
 Changing Case 110
 Padding 110
 Removing and Replacing Text 111
 Translating Text 111
 Finding Text 112
 Checking Text Content 113

16 SETS Page

16.1 Some Set Concepts 114

16.2 Working with Sets 115

 Creating Sets 115
 Set Operations 115

16.3 Converting between Sets and Lists 116

 Converting Sets to Lists 116
 Converting Lists to Sets 117

16.4 Examples of the Use of Sets 118

 Counting Unique Letters or Words 118
 Finding the Differences between Lists 119

17 DICTIONARIES Page

17.1 Creating Dictionaries 120

 What is a Dictionary? 120
 Creating Dictionaries 120

17.2 Using Dictionaries 121

 Looking Up Items 121
 Looping Over Dictionary Items 121
 Adding. Editing and Deleting Items 122
 Sorting Dictionaries 122

18 WRITING FUNCTIONS Page

18.1 The Need for Functions 123

 Advantages of Using Functions 123

18.2 Writing a Function 124

 Step 1 – Identifying the Input Arguments 124
 Step 2 – Specifying the Output Data

Type
124

 Step 3 – Reviewing the Syntax Required 125
 Step 4 – Writing your Functions 125

18.3 Learning Points 126

 Variable Names are Isolated 126
 Arguments can have Different Names 126
 Functions can be Declared in any Order 127
 Your Function could Crash in Many Ways 127
 Data Types are for Guidance Only 128

18.4 Ways to Pass Arguments 129

 Arguments by Name or Position 129
 Forcing Positional or Named Arguments 130
 Optional Arguments 130

18.5 Arbitrary and Keyword Arguments 131

 Passing an Unknown Number of
Argument Values

131

 Passing an Arbitrary Set of Arguments 132

18.6 Using Modules for Functions 133

18.7 Modular Programming 134

18.8 Docstrings 135

TABLE OF CONTENTS (5 of 7)

© Copyright 2025 Page 6

19 SCRAPING WEBSITES Page

19.1 Case Study 136

19.2 Preparation for Web Scraping 137

 Understand the Underlying HTML 137
 Understanding the Limitations 137

19.3 Understanding HTML 138

 The Document Object Model (DOM) 138
 HTML Tags 138
 Tag Attributes 139
 Classes and Ids 139

19.4 Getting Started 140

 Choosing a Web Scraping Tool 140
 Limitations of the Requests Module 140
 Installing BeautifulSoup 141
 Getting Help 141

19.5 Getting HTML 142

 Browsing a Web Site 142
 Possible HTML Parsers 142
 Using HTML from File 143

19.6 Ways to Navigate 144

 Chaining Elements 144
 Getting a List of Relatives of an Element 144
 Example: Contents versus Descendants 145
 Example: Showing All Text 145

19.7 Getting Output 146

19.8 Finding Elements 147

 Finding Elements by Tag 147
 Finding Elements by Attribute 148
 Finding Attributes by Class 148
 Non-recursive Finds 148

19.9 Searching Using CSS Selectors 149

 Example: Finding Elements of Given
Class

149

 Finding Elements within a Given Id 149

20 WORKING WITH EXCEL Page

20.1 Getting Started with Openpyxl 150

 Installing Openpyxl 150
 Getting Help with OpenPyXl 150

20.2 Working with Workbooks 151

 Creating and Saving Workbooks 151
 Opening and Closing Workbooks 151

20.3 Working with Worksheets 152

 Inserting Worksheets 152
 Our Example Workbook 152
 Getting a List of Worksheet Names 153
 Getting a Worksheet Itself 153
 Getting and Setting the Active Worksheet 153
 A Worked Example 154
 Looping over Worksheets 154

20.4 Working with Cells 155

 Referring to Single Cells 155
 Useful Cell Properties 155

20.5 Looping over Cells 156

 Looping over Row and/or Column
Numbers

156

 Offsetting Cells 156

21 OTHER FILE TYPES Page

21.1 Overview 157

21.2 Linking to SQL Server (or Other
Databases)

158

 Importing Pyodbc 158
 Creating a Connection 158
 Creating a Cursor 158
 Choosing a Fetch Method 159
 A Full Worked Example 160
 Inserting, Updating and Deleting Data 161
 Running Stored Procedures with

Parameters
161

21.3 CSV Files 162

 Writing CSV Files 162
 Reading CSV Files 162

21.4 JSON Files 163

 Serialisation and Deserialisation 163
 Conversions 163
 Loading and Dumping 164
 Writing to JSON Files 164
 Reading from JSON Files 165
 Reading an External JSON File 165

TABLE OF CONTENTS (6 of 7)

© Copyright 2025 Page 7

22 NUMPY Page

22.1 Overview 166

 Our Example 166
 Advantages of NumPy 166
 Some NumPy Terms 167

22.2 Creating Arrays 168

 Data Types 168
 Standard Arrays 168
 Filling Arrays Automatically 169
 Filling Arrays with Pre-set Values 169
 Filling Arrays with Random Numbers 170
 Filling Arrays from Sequences 170

22.3 Working with Parts of an Array 171

 Slicing Arrays 171
 Another Slicing Example 172

22.4 Array Maths 173

 Aggregating 173
 Array Multiplication and Broadcasting 174
 Matrix Multiplication 175
 Scalar (Elementwise) Operations 175

22.5 Operations on Arrays 176

 Transposing an Array 176
 Flattening or Ravelling an Array 176
 Changing Array Elements 177
 Reshaping and Resizing Arrays 177
 Joining Arrays (Stacking and

Concatenating)
178

 Other Array Operations 178

23 PANDAS Page

23.1 Overview 179

 Why Use Pandas not Excel? 179

23.2 Creating Dataframes and Series 180

 Creating Dataframes 180
 Creating Series 180

23.3 Reading and Writing Dataframes 181

 Reading from Excel or CSV Files 181
 Reading in a SQL Server Table 181
 Writing to CSV 182
 Writing to Excel 182
 Writing to a SQL Server Table 183

23.4 Showing Dataframe Information 184

23.5 Showing Parts of a Dataframe 185

 Top and Bottom Rows (Heads and Tails) 185
 Picking Out Particular Series or Columns 185
 Filtering Dataframes 186
 Slicing Rows using ILOC 186
 Returning Indexed Rows Only using LOC 186

23.6 Aggregating Data 187

 Single Statistics 187
 Statistics for Multiple Columns 187
 Showing Multiple Statistics 188
 Showing Grouped Statistics 188

23.7 Calculations with Columns 189

 Getting at the Text in a Column 189
 Mathematical Calculations on Columns 189
 Working with Dates 190

23.8 Other Dataframe Operations 191

 Renaming Columns 191
 Sorting Dataframes 191
 Joining Dataframes Together 192
 Removing Duplicates 192

23.9 Plotting Dataframes 193

24 POWER BI AND PYTHON Page

24.1 Preparing for Python 194

24.2 Getting Data from Python 195

 Creating your Dataframe 195
 Starting to Create a Python Data Source 195
 Finishing the Process 196

24.3 Power BI Python Visuals 197

 Starting your Visual 197
 Creating the Visual 198
 Seeing the Full Code 198

TABLE OF CONTENTS (7 of 7)

© Copyright 2025 Page 8

25 PYTHON CODING USING AI TOOLS Page

25.1 Choosing an AI Tool 199

25.2 Generating Code 200

 Our Example – Scraping a Website 200
 A Critique of the Code Generated 201
 Problems with the Code 201
 Simplifying the Code 202

25.3 Refactoring / Changing Code 203

 Global Variable Changes 203
 Stylistic Changes 203

25.4 Optimising Code 204

 Writing Code more Efficiently 204
 Changing the Algorithm 204

25.5 Debugging 205

 Our Example – Reading a Shopping List 205
 What to Ask 205
 Listing the Bugs 206

25.6 Researching Modules 207

Chapter 1 - Getting Started

© Copyright 2025 Page 9

CHAPTER 1 - GETTING STARTED

1.1 Introducing Python

Python is the only programming language named after a BBC comedy series. It was originally
created by a Dutch programmer called Guido van Rossum.

Installing Python

You can download Python from
https://www.python.org/downloads/ :

Here are our recommended settings:

The author has programmed extensively in VB, C# and SQL, and is an enthusiastic
convert to Python. It will let you develop powerful programs quickly, although its
management of paths and packages will have you tearing your hair out!

Wise
Owl’s
Hint

Click on this button to install the latest version
of Python at the time of writing.

a) Managing paths in Python is a pain! Do
yourself a favour and tick this box to help
Windows programs run Python easily.

b) You can choose
which bits of
Python you want to
install, although it’s
probably best just
to go with the
defaults.

You’ll certainly want to
install pip (which will help
you import modules to
accomplish different
tasks), td/tk (which will
help you create GUI
applications) and IDLE (a
Python editor – see next
page).

https://www.python.org/downloads/

Chapter 1 - Getting Started

© Copyright 2025 Page 10

1.2 Choosing an Editor

Python comes with its own built-in editor called IDLE
(named after Eric), but it’s a bit primitive:

Choices of Editor

Here are some possible editors that you could choose:

Editor Notes

Visual Studio Code A generic code editor maintained by Microsoft but available free of charge (don’t confuse
it with Visual Studio, which is a completely different program – see below).

PyCharm An editor devoted to writing Python code. Reviews online suggest that it can be very slow
to work with, and some users will need to upgrade to the paid Premium edition.

Visual Studio If you already spend time working in Visual Studio, you may find it easiest to use this as
your development environment (although it’s a bit of a big beast!).

Jupyter Notebooks If you work in machine learning or AI you may well choose this powerful coding
environment.

There are many other Python editors out there with names like Atom and Sublime,
as well as tools which will manage your Python code such as Anaconda. This
courseware uses IDLE to get started, then switches to Visual Studio Code.

Wise
Owl’s
Hint

A program written in IDLE. Although it’s a great package for getting
started, it doesn’t have true Intellisense (which in this owl’s view rules
it out as a serious development environment).

Chapter 1 - Getting Started

© Copyright 2025 Page 11

1.3 Using IDLE

IDLE was (allegedly) named after Eric Idle,
one of the Monty Python team. There’s also
a Python editor called Eric, but none called
Cleese or Palin that Wise Owl know of.

When you install Python, you should
automatically get IDLE at the same time:

Running Single Commands (Interactive Mode)

You can run any single command by typing it in at the command prompt and pressing ↩ :

Colour-Coding / Case Sensitivity

Note that Python is a case-sensitive language!

The acronym
does work well, it
has to be said.

The latest version
of the IDLE Python
editor (at the time
of writing).

a) The >>> text is called
the command prompt -
it’s waiting for you to
type in a valid Python
command.

b) The print command
just displays the
information in
parentheses in IDLE.

c) The output of your
command is the
message that you
chose to print.

Here IDLE hasn’t colour-coded the word Print, because it
doesn’t recognise it as a valid Python command ...

... and displays an error when you press ↩ to try to run
the command.

Chapter 1 - Getting Started

© Copyright 2025 Page 12

Creating, Saving and Running Programs

If you want to execute a sequence of commands, you don’t have to run each one individually; instead
you can save them in a file:

You can obviously open existing files that you’ve previously created to run their code
instead.

Wise
Owl’s
Hint

a) Choose to create a new file from the File menu (as this shows, you can
instead press Ctrl + N).

b) Type in a sequence of valid Python statements (the # symbol denotes
a comment, which will be ignored – more on comments shortly).

c) Choose this option to run your code (although it’s quicker to press F5 instead
as a short-cut). You’ll be prompted to save your code in a file – until you do this
you won’t be able to run it.

d) Your file will be saved
with an extension of .py.

e) You can now see the
output from your
program. When
you’ve finished, click
on the cross at the
top right to close
down the IDLE shell
and return to your
program.

Chapter 2 - Basic Coding

© Copyright 2025 Page 13

CHAPTER 2 - BASIC CODING

2.1 Comments

Good programmers add comments to their code, to explain what it is meant to do!

Single-line Comments

Most Python comments begin with a single # character:

Multi-line Comments

You can use three double-quotation marks in a row to mark
out multiple comment lines:

Commenting Out Lines (and Uncommenting)

If you want to avoid running certain lines without removing them, you can comment them out:

You can select commented out lines and press Alt + 4 to reinstate them (or choose the
Uncomment Region menu option shown above).

Each separate line has to begin with its own # character. The red lines
in this program will be completely ignored by the Python interpreter.

These lines will be treated as comments (confusingly, IDLE chooses to
show them in green, not red).

a) Select part or all of the lines you want to comment out
and press Alt + 3 or choose this menu option.

b) For some reason IDLE puts two hashes in
front of each commented out line.

Chapter 2 - Basic Coding

© Copyright 2025 Page 14

2.2 Variables

A variable is a space inside your
computer which holds a single bit of
information (be it a number, date,
string of text or other value).

Declaring Variables

Here’s how you declare an integer variable in 4 commonly used programming languages:

Language Variable declaration

C#

SQL

JavaScript

Visual Basic

In Python, by contrast, you don’t declare a variable before using it (the act of assigning a value to a
variable automatically declares it at the same time).

The Python naming convention is to avoid camel case but instead use underscores
to divide the parts of a variable name. Thus you might call the second variable above
meaning_of_life, but wouldn’t call it MeaningOfLife.

Wise
Owl’s
Hint

For experienced programmers in other languages this will be one of the weirdest
things to get used to about Python, but it’s a good idea (to the extent that you will
now probably resent having to formally declare variables in other languages).

Wise
Owl’s
Hint

Two
examples
of Python
variables.

Here we’ve created a variable called answer, but are trying to
print out the value of an (uncreated) variable called answe.

The Python interpreter points out the error of
your ways when you try to run your program.

Chapter 2 - Basic Coding

© Copyright 2025 Page 15

Variable Types

Here are some of the common data types in Python:

Data type What it contains

str Any string of text

int Any whole number

float Any decimal number

bool Something which can be either true or false

Determining Type

Python determines the type of a variable from the value you assign to it. You can see this by using
the type function to investigate a variable’s data type:

It is typical of Python that the old long type used to denote very large integers is no
longer needed, and int covers everything from 0 to infinity!

Wise
Owl’s
Hint

This program will assign different values to the same
variable. After assigning each value, we print out the
type of the variable.

Here’s what this program would output:

Chapter 2 - Basic Coding

© Copyright 2025 Page 16

Assigning Values to Variables

You can assign values to individual variables as we’ve already seen by using this convention:

If you’re assigning two or more variables to the same value, you can do this in a single line:

You can do multiple assignments on the same line (although this owl thinks it makes your code
harder to read):

Deleting Variables

Python will delete any variables that you’ve created when the program containing them finishes, but
sometimes you may want to pre-empt this. You can do this using the del command:

variable_name = value_for_variable

This code would create 3
variables, but they would all
contain the same value if we
hadn’t subsequently changed
the value of one of them.

This code would create (then
show the values of) one string
and two integer variables:

Once you’ve deleted a variable, not surprisingly you
can no longer refer to it. Running this program would
give the following error:

Chapter 2 - Basic Coding

© Copyright 2025 Page 17

2.3 Rules of Arithmetic

Python follows the same order of arithmetic operation as most other computer packages (taught in
schools as BODMAS, standing for Brackets Of Division Multiplication Addition Subtraction).

In addition to the standard operators of + , - , * and / you can also use these:

Operation Operator

Raising to the power * * The following code excerpt would return 210, or 1024:

Taking the remainder
or modulus of a
number

% The following code would return 1 (the remainder when
you divide 22 by 7):

You can use parentheses to change the
default order of operation. This code would
give the following output:

For the second calculation, Python sums the
first two numbers before multiplying the result
by the third one.

Chapter 2 - Basic Coding

© Copyright 2025 Page 18

2.4 Basic Strings

A later chapter will give much more details on the tricks and functions you can use when working
with strings of text; this page just shows a few basic ones.

New Lines and Tabs

You can use the escape characters \n and \t to include new lines and tabs in your output:

Quotation Marks

To create a string which includes quotation marks, either use an escape character or switch from
double to single quotation marks (the second way seems easier):

Backslash Characters

Since the escape character is a \ , how can you include this in a string of text? The answer is to
repeat it:

Tabs are an unreliable way to align output, as the example above shows (the first
line includes two tabs, but the second only one). A better way to align text is to use
the ljust, rjust and/or center functions (covered in a later chapter)

Wise
Owl’s
Hint

This program would produce the
following output:

Both of these ways would embed quotation marks in the relevant
strings of text, to give this output:

This program would give the following output:

Chapter 2 - Basic Coding

© Copyright 2025 Page 19

Concatenating Text

Use the + symbol to join bits of text together:

Converting Numbers to Text

You can not join a string with a number; instead, you must first convert the number to a string using
the str function.

Here’s a working version of the code above:

Getting Inputs from Users

You can pause a program to ask a user to input values using the input function - for example:

Note that the input function always gives a string of text, so there’s no need to
convert the 42 above to a string before concatenating it with the user’s name.

Wise
Owl’s
Hint

This program would join the two variables together with
a space between them, to give this:

This program will crash because it is trying to join a string
of text (your_name) with an integer (your_age):

Note the use of a backslash at the end of this line to act as a continuation character, allowing a single programming
command to span multiple lines.

You must use the str function to convert numbers to text
before joining them with other bits of text. This would give:

Running this program (and inputting the values Bob and
42 at the prompts) would give this output:

Chapter 2 - Basic Coding

© Copyright 2025 Page 20

2.5 Testing Conditions

Simple Conditions

You can use the if statement to test conditions in Python, but you must follow it with a colon : and
indentation:

Multiple Conditions

If you want to test whether a condition is true or false, use else:

For multiple conditions, use as many elif statements as you need:

From version 3.10 Python will have a powerful match statement giving the
equivalent of the C#/JavaScript switch statement, the VB SELECT CASE statement
or the SQL CASE WHEN statement, reducing the need for multiple elif statement
blocks like the one shown above.

Wise
Owl’s
Hint

In most languages you would indent your code at this
point by pressing Tab to make it more readable. In
Python this space is a vital part of your code, and
without it you’ll get a run-time error.

This program will display a different message for someone
under 18 than for an adult. Here’s a typical output from
running the program:

Here the program tests (in this order):

• Whether the age is less than 18
• Whether the age is less than 40 (knowing that it can’t be

under 18, otherwise it would have passed the first test)
• Whether the age is more than 60

The program only prints out a welcome message for people who
don’t meet any of these conditions. A typical output might be:

Chapter 2 - Basic Coding

© Copyright 2025 Page 21

Testing for Equality

When you are testing if two values are equal in Python, you
must use two = signs in a row.

Combining and Negating Conditions

You can use the and, or and not keywords to
test different combinations of conditions:

Python also treats the following two statements as identical:

If you’re not used to it, this Python feature (and the fact that everything is case-
sensitive) will probably account for about 90% of the bugs that you create!

Wise
Owl’s
Hint

This can be a very disconcerting error message to see – what could you
possibly have done wrong? The answer is that because you’re testing
a condition you need to put this:

This program would output this::

This is because:

• This person is NOT coughing
• The person is either vaccinated OR masked (in fact,

they’re both)
• The person is masked AND vaccinated

The second test also checks that 18 is less than or equal to the value of the
variable age and that the value of the variable age is less than 65.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

What we do!

Basic

training
Advanced
training

Systems /
consultancy

O
ff

ic
e

 Microsoft Excel

 VBA macros

 Office Scripts

 Microsoft Access

P
o
w

er
 B

I,
 e

tc
 Power BI and DAX

 Power Apps

 Power Automate (both)

S
Q

L
 S

e
r
v
e
r

 SQL

 Reporting Services

 Report Builder

 Integration Services

 Analysis Services

C
o

d
in

g

 Visual C#

 VB programming

 MySQL

 Python

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

