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CHAPTER 1 - GETTING STARTED

1.1 Introducing Python 

Python is the only programming language named after a BBC comedy series.  It was originally 
created by a Dutch programmer called Guido van Rossum.  

Installing Python

You can download Python from 
https://www.python.org/downloads/ :

Here are our recommended settings:

The author has programmed extensively in VB, C# and SQL, and is an enthusiastic 
convert to Python.  It will let you develop powerful programs quickly, although its 
management of paths and packages will have you tearing your hair out!

Wise 
Owl’s 
Hint

Click on this button to install the latest version 
of Python at the time of writing.  

a) Managing paths in Python is a pain!  Do 
yourself a favour and tick this box to help 
Windows programs run Python easily.

b) You can choose 
which bits of 
Python you want to 
install, although it’s 
probably best just 
to go with the 
defaults.

You’ll certainly want to 
install pip (which will help 
you import modules to 
accomplish different 
tasks), td/tk (which will 
help you create GUI 
applications) and IDLE (a 
Python editor – see next 
page).

https://www.python.org/downloads/
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1.2 Choosing an Editor

Python comes with its own built-in editor called IDLE 
(named after Eric), but it’s a bit primitive:

Choices of Editor

Here are some possible editors that you could choose:

Editor Notes

Visual Studio Code A generic code editor maintained by Microsoft but available free of charge (don’t confuse 
it with Visual Studio, which is a completely different program – see below).

PyCharm An editor devoted to writing Python code.  Reviews online suggest that it can be very slow 
to work with, and some users will need to upgrade to the paid Premium edition.

Visual Studio If you already spend time working in Visual Studio, you may find it easiest to use this as 
your development environment (although it’s a bit of a big beast!).

Jupyter Notebooks If you work in machine learning or AI you may well choose this powerful coding 
environment.

There are many other Python editors out there with names like Atom and Sublime, 
as well as tools which will manage your Python code such as Anaconda.  This 
courseware uses IDLE to get started, then switches to Visual Studio Code.

Wise 
Owl’s 
Hint

A program written in IDLE.  Although it’s a great package for getting 
started, it doesn’t have true Intellisense (which in this owl’s view rules 
it out as a serious development environment).
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1.3 Using IDLE

IDLE was (allegedly) named after Eric Idle, 
one of the Monty Python team.  There’s also 
a Python editor called Eric, but none called 
Cleese or Palin that Wise Owl know of.

When you install Python, you should 
automatically get IDLE at the same time:

Running Single Commands (Interactive Mode)

You can run any single command by typing it in at the command prompt and pressing  ↩  :

Colour-Coding / Case Sensitivity

Note that Python is a case-sensitive language!

The acronym 
does work well, it 
has to be said.

The latest version 
of the IDLE Python 
editor (at the time 
of writing).

a) The  >>>  text is called 
the command prompt -
it’s waiting for you to 
type in a valid Python 
command.

b) The print command 
just displays the 
information in 
parentheses in IDLE.

c) The output of your 
command is the 
message that you 
chose to print.

Here IDLE hasn’t colour-coded the word Print, because it 
doesn’t recognise it as a valid Python command ...

... and displays an error when you press  ↩  to try to run 
the command.
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Creating, Saving and Running Programs

If you want to execute a sequence of commands, you don’t have to run each one individually; instead 
you can save them in a file:

You can obviously open existing files that you’ve previously created to run their code 
instead.  

Wise 
Owl’s 
Hint

a) Choose to create a new file from the File menu (as this shows, you can 
instead press  Ctrl  +  N   ).

b) Type in a sequence of valid Python statements (the  #  symbol denotes 
a comment, which will be ignored – more on comments shortly).

c) Choose this option to run your code (although it’s quicker to press  F5  instead 
as a short-cut).  You’ll be prompted to save your code in a file – until you do this 
you won’t be able to run it.

d) Your file will be saved 
with an extension of .py.

e) You can now see the 
output from your 
program.  When 
you’ve finished, click 
on the cross at the 
top right to close 
down the IDLE shell 
and return to your 
program.
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CHAPTER 2 - BASIC CODING

2.1 Comments 

Good programmers add comments to their code, to explain what it is meant to do!

Single-line Comments

Most Python comments begin with a single  #  character:

Multi-line Comments

You can use three double-quotation marks in a row to mark 
out multiple comment lines:

Commenting Out Lines (and Uncommenting)

If you want to avoid running certain lines without removing them, you can comment them out:

You can select commented out lines and press  Alt  +  4  to reinstate them (or choose the 
Uncomment Region menu option shown above).

Each separate line has to begin with its own  #  character.  The red lines 
in this program will be completely ignored by the Python interpreter.

These lines will be treated as comments (confusingly, IDLE chooses to 
show them in green, not red).

a) Select part or all of the lines you want to comment out 
and press  Alt  +  3  or choose this menu option.

b) For some reason IDLE puts two hashes in 
front of each commented out line.
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2.2 Variables

A variable is a space inside your 
computer which holds a single bit of 
information (be it a number, date, 
string of text or other value).

Declaring Variables

Here’s how you declare an integer variable in 4 commonly used programming languages:

Language Variable declaration

C#

SQL

JavaScript

Visual Basic

In Python, by contrast, you don’t declare a variable before using it (the act of assigning a value to a 
variable automatically declares it at the same time).

The Python naming convention is to avoid camel case but instead use underscores 
to divide the parts of a variable name.  Thus you might call the second variable above 
meaning_of_life, but wouldn’t call it MeaningOfLife.

Wise 
Owl’s 
Hint

For experienced programmers in other languages this will be one of the weirdest 
things to get used to about Python, but it’s a good idea (to the extent that you will 
now probably resent having to formally declare variables in other languages).

Wise 
Owl’s 
Hint

Two 
examples 
of Python 
variables.

Here we’ve created a variable called answer, but are trying to 
print out the value of an (uncreated) variable called answe.

The Python interpreter points out the error of 
your ways when you try to run your program.
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Variable Types

Here are some of the common data types in Python:

Data type What it contains

str Any string of text

int Any whole number

float Any decimal number

bool Something which can be either true or false

Determining Type

Python determines the type of a variable from the value you assign to it.  You can see this by using 
the type function to investigate a variable’s data type:

It is typical of Python that the old long type used to denote very large integers is no 
longer needed, and int covers everything from 0 to infinity! 

Wise 
Owl’s 
Hint

This program will assign different values to the same 
variable.  After assigning each value, we print out the 
type of the variable.  

Here’s what this program would output:
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Assigning Values to Variables

You can assign values to individual variables as we’ve already seen by using this convention:

If you’re assigning two or more variables to the same value, you can do this in a single line:

You can do multiple assignments on the same line (although this owl thinks it makes your code 
harder to read):

Deleting Variables

Python will delete any variables that you’ve created when the program containing them finishes, but 
sometimes you may want to pre-empt this.  You can do this using the del command:

variable_name = value_for_variable

This code would create 3 
variables, but they would all 
contain the same value if we 
hadn’t subsequently changed 
the value of one of them.

This code would create (then 
show the values of) one string 
and two integer variables:

Once you’ve deleted a variable, not surprisingly you 
can no longer refer to it.  Running this program would 
give the following error:
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2.3 Rules of Arithmetic

Python follows the same order of arithmetic operation as most other computer packages (taught in 
schools as BODMAS, standing for Brackets Of Division Multiplication Addition Subtraction).

In addition to the standard operators of  +  ,  -  ,  *  and  /  you can also use these:

Operation Operator

Raising to the power  * *  The following code excerpt would return 210, or 1024:

Taking the remainder 
or modulus of a 
number

% The following code would return 1 (the remainder when 
you divide 22 by 7):

You can use parentheses to change the 
default order of operation.  This code would 
give the following output:

For the second calculation, Python sums the 
first two numbers before multiplying the result 
by the third one.
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2.4 Basic Strings

A later chapter will give much more details on the tricks and functions you can use when working 
with strings of text; this page just shows a few basic ones.

New Lines and Tabs

You can use the escape characters  \n   and  \t   to include new lines and tabs in your output:

Quotation Marks

To create a string which includes quotation marks, either use an escape character or switch from 
double to single quotation marks (the second way seems easier):

Backslash Characters

Since the escape character is a  \  , how can you include this in a string of text?  The answer is to 
repeat it:

Tabs are an unreliable way to align output, as the example above shows (the first 
line includes two tabs, but the second only one).  A better way to align text is to use 
the ljust, rjust and/or center functions (covered in a later chapter)

Wise 
Owl’s 
Hint

This program would produce the 
following output:

Both of these ways would embed quotation marks in the relevant 
strings of text, to give this output:

This program would give the following output:
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Concatenating Text

Use the  +  symbol to join bits of text together:

Converting Numbers to Text

You can not join a string with a number; instead, you must first convert the number to a string using 
the str function.

Here’s a working version of the code above:

Getting Inputs from Users

You can pause a program to ask a user to input values using the input function - for example:

Note that the input function always gives a string of text, so there’s no need to 
convert the 42 above to a string before concatenating it with the user’s name.

Wise 
Owl’s 
Hint

This program would join the two variables together with 
a space between them, to give this:

This program will crash because it is trying to join a string 
of text (your_name) with an integer (your_age):

Note the use of a backslash at the end of this line to act as a continuation character, allowing a single programming 
command to span multiple lines.

You must use the str function to convert numbers to text 
before joining them with other bits of text.  This would give:

Running this program (and inputting the values Bob and 
42 at the prompts) would give this output:
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2.5 Testing Conditions

Simple Conditions

You can use the if statement to test conditions in Python, but you must follow it with a colon  :  and 
indentation:

Multiple Conditions

If you want to test whether a condition is true or false, use else:

For multiple conditions, use as many elif statements as you need:

From version 3.10 Python will have a powerful match statement giving the 
equivalent of the C#/JavaScript switch statement, the VB SELECT CASE statement 
or the SQL CASE WHEN statement, reducing the need for multiple elif statement 
blocks like the one shown above.

Wise 
Owl’s 
Hint

In most languages you would indent your code at this 
point by pressing  Tab  to make it more readable.  In 
Python this space is a vital part of your code, and 
without it you’ll get a run-time error.

This program will display a different message for someone 
under 18 than for an adult.  Here’s a typical output from 
running the program:

Here the program tests (in this order): 

• Whether the age is less than 18
• Whether the age is less than 40 (knowing that it can’t be 

under 18, otherwise it would have passed the first test)
• Whether the age is more than 60

The program only prints out a welcome message for people who 
don’t meet any of these conditions.  A typical output might be:
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Testing for Equality

When you are testing if two values are equal in Python, you 
must use two  =  signs in a row.  

Combining and Negating Conditions

You can use the and, or and not keywords to 
test different combinations of conditions:

Python also treats the following two statements as identical:

If you’re not used to it, this Python feature (and the fact that everything is case-
sensitive) will probably account for about 90% of the bugs that you create!

Wise 
Owl’s 
Hint

This can be a very disconcerting error message to see – what could you 
possibly have done wrong?  The answer is that because you’re testing 
a condition you need to put this:

This program would output this::

This is because:

• This person is NOT coughing 
• The person is either vaccinated OR masked (in fact, 

they’re both)
• The person is masked AND vaccinated

The second test also checks that 18 is less than or equal to the value of the 
variable age and that the value of the variable age is less than 65.



 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sales@wiseowl.co.uk


 
 

www.wiseowl.co.uk   |   (0161) 883 3606   |   sales@wiseowl.co.uk 

 

What we do! 
 
 
 

 

 

     
Basic 

training 
Advanced 
training 

Systems / 
consultancy 
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 Microsoft Excel  
   

  VBA macros  
   

  Office Scripts  
 

  

  Microsoft Access     
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  Power BI and DAX  

   

  Power Apps  
 

  

  Power Automate (both)  
  

 

 

 
 

 
    

        

 

 
 

 
    

 

S
Q

L
 S

e
r
v
e
r
 

 SQL  
   

  Reporting Services  
   

  Report Builder  
   

  Integration Services  
   

  Analysis Services  
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 Visual C#   
   

  VB programming    
 

  MySQL  
   

  Python  
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