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CHAPTER 1 - GETTING STARTED

1.1 Introduction to Office Scripts

This chapter introduces you to Office Scripts, beginning with the answers to a few simple questions.

What are Office Scripts?

Office Scripts are small programs used to automate tasks in Microsoft Excel.  You write code in the 
TypeScript language and you can either record the steps or write your program from scratch.

What do I need to use Office Scripts?

According to Microsoft, these are the three requirements for using Office Scripts:

1) Excel for Windows, for Mac, or on the web.

2) OneDrive for Business.

3) Any commercial or educational Microsoft 365 license with access to the Microsoft 365 Office 
desktop apps.

A basic Office Script to add 
a value to the end of a list 
and apply some formatting.
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Can’t I already Automate Excel?

If you’re thinking that Office Scripts sound a lot like VBA macros, you’re right!  In fact, there are three 
main ways to automate Excel, summarised in the table below:

Method What you can do
Office Scripts Automate the desktop or online version of Excel.

VBA Macros Automate any desktop Office application.

Office Add-Ins Create an add-in to extend the features of any desktop or online Office application.

Why use Office Scripts and not VBA?

Office Scripts allow you to do some things you can’t do with VBA macros, as described in the table 
below:

Feature Description
Excel online You can use Office Scripts to automate workbooks in the web version of Excel.

Power Automate You can run Office Scripts from a Power Automate flow.

External APIs Office Scripts support calls to external APIs which can provide data to your files.

Better security An Office Script only has access to the workbook in which it is running, unlike VBA 
which has access to your entire computer.

What are the Limitations?

Office Scripts have several limitations compared to VBA and Office Add-Ins, as described in the 
table below:

Feature Description
Excel only Currently, Office Scripts can only be used in Excel.  Office Add-Ins can also work with 

Word, PowerPoint, Outlook, OneNote and Project.  VBA can use OLE and COM 
libraries to control a variety of other applications, including the Microsoft Office apps.

No events VBA and Office Add-Ins can respond to events to make code run automatically.  Office 
Scripts must be run explicitly by the user.

Single workbook An Office Script only has access to the workbook in which it is running.  Even something 
as simple as copying a value from one workbook to another requires the use of a Power 
Automate flow.

User interface Office Scripts don’t have access to any of the user interface elements of Excel.  This 
means that you can’t display dialog boxes or similar UI elements.  If you need to create 
a user-interface it would be better to use VBA or to create a full Office Add-In.
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1.2 Preparing to Write Office Scripts

This section shows you the basic things you need to do before you can write your first script.

The Automate Ribbon Tab

The Automate tab of the ribbon contains the tools you need to write Office Scripts.

If you’re using the desktop version of Excel, the Automate tab may not appear automatically.  You 
can see how to display it in the diagram below:

Select Automate in 
the ribbon to see 
tools for working 
with Office Scripts.

a) Right-click any ribbon tab (here 
we’ve chosen the Home tab) and 
choose Customize the Ribbon...

b) On the right side of the dialog 
box, check the Automate box.

c) Click  OK  to add the Automate 
tab to the ribbon.
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The Code Editor

You edit Office Scripts in the Code Editor window in Excel.  You can open the Code Editor in several 
ways; a simple option is to choose Automate | All Scripts from the Excel ribbon.

In the desktop version of Excel you can move and resize the Code Editor window by clicking and 
dragging its title bar.

Click All Scripts to 
see the Code Editor.

The Code Editor 
appears on the right of 
the Excel window.

You can click here to 
create a new script.

This area will show a 
list of existing scripts 
and gives you a quick 
way to open them.

You can change the 
width of the Code 
Editor (you will 
definitely want to 
increase this!) by 
clicking and dragging 
the vertical divider.

Click and drag the title bar of the Code 
Editor to move it.

If you leave the Code Editor floating over 
the Excel window you can click and drag 
the window borders to resize it.

You can drag the Code Editor window to 
the left or right of the Excel window to 
dock it in position.
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1.3 Writing Your First Script

This section shows you how to write a simple program to add text to a cell and apply some formatting 
to get used to the basics of writing code.

Creating a New Script

Start by creating a new workbook in either the desktop or online version of Excel and then choose 
to create a new Office Script.

The Basic Structure of a Script

You can see the basic structure of your new script in the diagram below:

Your new script appears in the 
Code Editor window.  Excel will 
immediately save the script to 
the default Office Scripts folder 
in OneDrive.

You can create a new script by choosing Automate | New 
Script from the ribbon.  Alternatively, click New script at the 
top of the Code Editor window.

The result of running the 
script is this beautifully 
formatted cell!

The function contains a single line of code consisting of a comment.  You can use comments to annotate your code.

The function has a parameter called workbook which gives your 
code access to the Excel file that you currently have open.

The instructions of the 
function are contained in 
a set of curly brackets, or 
braces.

The script contains a function called main 
which acts as a container for your code.
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Adding a Comment

You can add your own comments to your code to provide helpful reminders of what it is meant to do.

Writing Basic Instructions

Our first instruction will write the name Wise Owl into the currently selected cell in the workbook. To 
do this:

1) On a new line in the script, begin typing the word workbook (take care when doing this – 
TypeScript is a case-sensitive language!).

2) After the word workbook, enter a full stop and begin typing getActiveCell.

3) After getActiveCell, open and close some round brackets.

4) Enter another full stop followed by setValue then an open round bracket and double-quotes.

Click at the end of the line 2 then press  Enter  twice to 
provide a new line on which to write your comment.

Type two forward slashes to begin the comment and 
follow these with anything you feel is appropriate.

As you begin typing you’ll see a list 
of options matching what you’ve 
typed so far.  To select an item 
from this Intellisense list you can 
press  Tab  or  Enter  or click on the 
word with the mouse.

Use the Intellisense 
list to help you finish 
entering the word.

You can type in the open round 
bracket and the closing bracket will 
be added for you automatically.

The other double-quote and closing 
round bracket will be added for you 
automatically.
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5) Between the double quotes, enter the name you want to write into the cell.

6) Complete the instruction by adding a semicolon to the end of the line.

Adding More Instructions

You can continue adding as many instructions as you need to complete your program.  The diagram 
below shows the complete script with two extra instructions and relevant comments:

Running the Script

You can see how to run your finished script in the diagram below:

Experienced VBA programmers should be careful not to press  F5  to run your code.  
In the online version of Excel this will refresh the page and close the Code Editor!

Wise 
Owl’s 
Hint

You can change the text 
in the double quotes to 
anything you like.

Each TypeScript instruction 
ends with a semicolon.

We’ve deleted the first 
comment to tidy up the 
code.

The pattern of the new 
instructions is similar to 
the first one we added.

Click Run at the top of the Code Editor to run the script that you 
currently have open.

A message appears to tell you 
the code is running or, if you’re 
unlucky, that the code has 
failed!  You can click Stop if 
you need to abandon a script 
that appears to be stuck. The beautiful end result!
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1.4 Code Editor Settings

Changing Code Editor Settings

To change Code Editor settings you first need to open a script file.

A Note on Visual Studio Code

If you’re working in the online version of Excel, you can enable the Visual Studio Code connection 
option.  You can then open a script in the Visual Studio Code web application, as shown below:

Click  ...  at the top right of the Code Editor and choose Editor Settings 
from the menu.

To return to your script, click 
this arrow.

You can change the Theme 
to alter the appearance of 
the editor.  The example 
below uses the Dark theme.

You can enable a Minimap 
of your script which appears 
at the top right of the code 
window.

The Folding option allows you to collapse and expand sections of your 
code contained within different types of brackets.

With the Folding option enabled you can 
click arrows like this one to collapse and 
expand sections of your script.

This option allows you to edit 
a script in the online version 
of Visual Studio Code.

Use the menu at the top right of 
the code window and choose 
Open in VS Code.

You can edit the script 
in the new tab.

You can close the Visual Studio tab or click 
Close to return to the Code Editor in Excel.
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CHAPTER 2 - WORKING WITH SCRIPT FILES

2.1 Office Script Files

This section explains the basics of working with Office Script files.

Viewing Existing Script Files

You can see your recently used and sample scripts in the Automate tab in the Excel ribbon.

To see all your scripts, choose Automate | All Scripts from the Excel ribbon.

The More Options Menu

You can use a script’s More options menu to perform several useful tasks on it.

The list of script files appears 
in the Code Editor window.

Click View more scripts to open a dialog box which lets you browse to 
other folders in OneDrive and SharePoint.

You can click the file location 
to open it in OneDrive.

You can click the script name 
to see its details, as shown on 
the right.

Your Office Scripts appear in a 
gallery.  You can click a script 
to see its details in the Code 
Editor window.

Hover over a script in the list then 
click the three vertical dots to 
open the More options menu.

You can open the More options 
menu when the file is open by 
clicking the three horizontal dots.

The menu allows you to perform 
several useful tasks on the file.
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Creating a New Script File

The simplest way to create a new script is to choose Automate | New Script from the Excel ribbon.

Opening an Existing Script

You can open an existing script to edit its code as shown in the diagram below:

Renaming an Open Script

You can rename a script file, even if you’re currently editing it.

Deleting a Script

You can delete a script from the More options menu, even if you are currently editing it.

The new script opens ready 
for editing.  Excel saves the 
script for you in the default 
save location.

Hover the mouse over the script and then 
click the pencil icon which appears.

Alternatively, you can choose Edit from 
the script’s More options menu.

Click the script name or choose Rename from the More options menu.

Type the new name for the script file and then press  Enter  to rename it.

Choose Delete from the 
More options menu.

Click Delete to confirm 
your choice.
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2.2 Saving Script Files

Where Office Scripts are Saved

By default, Office Script files are saved in the Documents/Office Scripts folder in OneDrive.

Saving an Open Script

You can save the script that you’re currently working on in the default folder as shown below:

The Save As Option

You can choose to save your script in a different location as shown below:

Click here to save the script you have open.

You’ll see a confirmation message like this.

You can click the file location of a script to 
open the folder in OneDrive.

Office Script files have the osts filename 
extension.

a) Pick Save script as from the More options menu.

b) Navigate to the folder you want to save the script 
into.  You can create a new folder by clicking the 
button at the top right of the dialog box.

c) Click Save to save 
the file in its new 
location.
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2.3 Sharing Scripts

Scripts saved to your OneDrive are accessible only to you.  If you’d like others to use your scripts, 
you’ll need to share them in some way.

Sharing a Script

The first step in sharing a script is to share it in a workbook.  To do this, first open the workbook you 
want to share the script in.

You’ll also need to give other people access to the workbook, as shown in the diagram below:

Stopping Sharing a Script

The diagram below shows how you can reverse the process of sharing an Office Script:

a) Choose Share from the script’s 
More options menu.

b) Click Share to confirm 
that you want to share 
the script.  The script’s 
icon changes to show 
that it is being shared:

a) Click the Share menu in the 
top right of the Excel window 
and choose Share.

b) In the dialog box, configure 
with whom the workbook is to 
be shared.

c) Share the file 
by sending a 
link in an email, 
or by copying 
the link and 
distributing it 
another way.

a) From the script’s 
More options menu, 
choose Stop 
sharing.

b) On the dialog box which appears, choose whether to stop 
sharing in all workbooks or just the currently open one, and 
then click Stop sharing.
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