
Office Scripts Introduction

Sample manual - first two chapters

Manual 1286 - 132 pages –

TABLE OF CONTENTS (1 of 5)

© Copyright 2024 Page 2

1 GETTING STARTED Page

1.1 Introduction to Office Scripts 7

 What are Office Scripts? 7
 What do I need to use Office Scripts? 7
 Can’t I already Automate Excel? 8
 Why use Office Scripts and not VBA? 8
 What are the Limitations? 8

1.2 Preparing to Write Office Scripts 9

 The Automate Ribbon Tab 9
 The Code Editor 10

1.3 Writing Your First Script 11

 Creating a New Script 11
 The Basic Structure of a Script 11
 Adding a Comment 12
 Writing Basic Instructions 12
 Adding More Instructions 13
 Running the Script 13

1.4 Code Editor Settings 14

 Changing Code Editor Settings 14
 A Note on Visual Studio Code 14

2 WORKING WITH SCRIPT FILES Page

2.1 Office Script Files 15

 Viewing Existing Script Files 15
 The More Options Menu 15
 Creating a New Script File 16
 Opening an Existing Script 16
 Renaming an Open Script 16
 Deleting a Script 16

2.2 Saving Script Files 17

 Where Office Scripts are Saved 17
 Saving an Open Script 17
 The Save As Option 17

2.3 Sharing Scripts 18

 Sharing a Script 18
 Stopping Sharing a Script 18

3 WRITING OFFICE SCRIPTS Page

3.1 TypeScript Language Basics 19

 TypeScript Language Elements 19

3.2 Tools for Writing Code 20

 IntelliSense 20
 Showing More Information 20
 Showing Help Popups 21
 The Context Menu 21
 The Command Palette 21

3.3 Writing Neat Code 22

 Writing Comments 22
 Commenting Out Code 22
 Writing Long Instructions 23
 White Space and Indenting 23
 Auto Formatting a Script 24
 Using Semicolons 24

3.4 Dealing with Errors 25

 Spotting Compile-time Errors 25
 Viewing Error Information 26
 Cycling Through Errors 26
 Fixing Errors Automatically 26

3.5 Getting Help 27

 Microsoft Documentation 27
 Other Documentation 27
 Recording Scripts 28
 Searching for Help 28

4 RUNNING SCRIPTS Page

4.1 Introduction 29

 Running a Script 29
 Stopping a Script that is Running 29

4.2 When Things Go Wrong 30

 Spotting Runtime Errors 30

4.3 Using Buttons 31

 Creating a Button 31
 Using a Button to Run a Script 31
 Editing a Button 32
 Removing Buttons 33

TABLE OF CONTENTS (2 of 5)

© Copyright 2024 Page 3

5 RANGES Page

5.1 Referring to Range Objects 34

 Referring to the Active Cell 34
 Referring to a Cell by Reference 34
 Referring to Multiple Cells 35
 Using Named Ranges 35
 Using Row and Column Numbers 36
 Multiple Cells using Indexes 36

5.2 The RangeAreas Object 37

 Referring to Multiple Separate Ranges 37
 RangeAreas vs. Range Objects 37

5.3 Getting and Setting Cell Values 38

 Changing the Value of a Cell 38
 Changing Values without Selecting Cells 38
 Reading the Value of a Cell 39
 Cell Data Types 39

5.4 Cell Formulas 40

 Creating Formulas using Cell References 40
 Creating Formulas using R1C1 Notation 40

5.5 Formatting Cells 41

 Fill Formatting Properties 41
 Font Formatting Properties 41
 Formatting Cell Borders 42
 Changing Number Formats 42
 Using Cell Styles 42

5.6 Moving Between Worksheets 43

 Activating a Worksheet 43
 Modifying Cells without Switching Sheets 43

5.7 Relative Cell References 44

 Finding the Last Cell in a List 44
 Selecting to the End of a Filled Range 44
 Referring to a Region of Cells 45
 Offsetting Rows and Columns 45
 Resizing a Range 46
 Entire Rows and Columns 46
 Getting the Used Range 47
 Finding Special Cells 47

5.8 Inserting, Deleting and Clearing Cells 48

 Inserting Cells 48
 Deleting Cells 48
 Clearing Cells 48

5.9 Moving and Copying Cells 49

 Moving Cells 49
 Copying Cells 50
 Options for Copying Cells 50

5.10 Finding Ranges 51

 Finding a Single Cell 51
 Finding Multiple Cells 51

6 VARIABLES Page

6.1 What are Variables? 52

 Declaring a Variable 52
 Reassigning Variables 53
 Declaring Constants 53
 Using the Var Statement 53

6.2 Variable Scope 54

 Scope with the Let Statement 54
 Scope with the Var Statement 54

6.3 Variables and Types 55

 Primitive and Object Types 55
 Implicitly Typed Variables 55
 Explicit Variable Types 56
 Casting Types 56
 Printing the Type of a Value 57
 The Unknown Type 57

7 CONDITIONAL STATEMENTS Page

7.1 The If Statement 58

 Basic If Statements 58
 The Else Clause 59
 Else If Clauses 59

7.2 Writing Logical Tests 60

 Comparison Operators 60
 Combining Conditions 60
 The Not Operator 60

7.3 Conditions and Objects 61

 Testing if an Object Exists 61
 Conditional Actions 61

7.4 Conditions and Cell Values 62

 Testing the Type of a Value 62
 Testing for Empty Cells 62

7.5 Other Conditional Statements 63

 The Conditional Operator 63
 The Switch Statement 63

TABLE OF CONTENTS (3 of 5)

© Copyright 2024 Page 4

8 WORKING WITH DATA Page

8.1 Working with Numbers 64

 Basic Operators for Numbers 64
 Order of Operations 64
 Number Assignment Operators 65
 Formatting Numbers 65
 Converting Strings to Numbers 66
 The Number Object 66
 The Math Object 67
 Rounding Numbers 67
 Generating Random Numbers 67

8.2 Working with Strings 68

 Concatenating Text 68
 String Templates 68
 Escaping Characters 69
 New Lines 69
 Editing Strings 70
 Comparing Strings 70
 Searching Strings 71
 Regular Expressions 71

8.3 Working with Dates 72

 Creating a Date Object 72
 Getting and Setting Date Parts 72
 Formatting Dates 73
 Converting Excel Dates to TypeScript

Dates
73

 Testing for Date Values 74
 A Quirk of TypeScript Dates 74

9 FUNCTIONS AND PARAMETERS Page

9.1 Functions 75

 Why Create Extra Functions? 75
 Declaring a Function 76
 Calling a Function 76

9.2 Parameters 77

 Declaring Parameters 77
 Default Parameter Values 77
 Optional Parameters 78

9.3 Returning Values 79

 The Return Statement 79
 Specifying the Return Type 79

9.4 Function Expressions 80

 Creating a Function Expression 80
 Anonymous Function Expressions 80

9.5 Arrow Function Expressions 81

 Creating an Arrow Function Expression 81
 Including Multiple Statements 81

10 CONDITIONAL LOOPS Page

10.1 Conditional Loops 82

 While Loops 82
 Do While Loops 83
 Nesting Loops 83

10.2 Exiting a Loop 84

 The Break Statement 84
 The Continue Statement 84
 Using Line Labels 85

10.3 Finding Text with a Loop 86

11 FOR LOOPS Page

11.1 Introduction to For Loops 87

 For Loop Syntax 87
 A Basic Example 87

11.2 For Loops and Ranges 88

 Getting a Cell by Row and Column
Number

88

 Offsetting from a Range 88
 Looping Over Rows and Columns 89

11.3 More For Loop Features 90

 Continue and Break Statements 90
 Optional Loop Statements 90
 Multiple Loop Statements 90

TABLE OF CONTENTS (4 of 5)

© Copyright 2024 Page 5

12 ARRAYS Page

12.1 Introduction to Arrays 91

 Declaring and Populating an Array 91
 Viewing Array Contents 91
 Referring to Array Elements 92
 Declaring an Empty Array 92

12.2 Modifying Array Contents 93

 Sorting Arrays 93
 Adding Items 93
 Removing Items 94
 Altering Array Values 94

12.3 Searching Arrays 95

 Basic Array Search Methods 95
 Searching Arrays with Arrow Functions 95

12.4 Extracting Values from Arrays 96

 Extracting Items to New Arrays 96
 Combining Arrays into a New Array 96
 Converting an Array to a String 96

12.5 Looping Over Arrays 97

 While Loops 97
 For Loops 97
 For Of Loops 98
 The forEach Method 98

12.6 Multi-Dimensional Arrays 99

 Creating a Multi-Dimensional Array 99
 Referring to Elements 99
 Looping Over Multi-Dimensional Arrays 100

12.7 Arrays and Ranges 101

 Getting Cell Contents as an Array 101
 Writing an Array to a Range 102
 Looping Through Range Values 103
 RangeAreas and Arrays 104

12.8 Arrays and Function Parameters 105

 The Argument Array 105
 Passing an Array to a Function 105
 The Rest Parameter 106
 Returning an Array 106

13 COLLECTIONS Page

13.1 Introduction to Collections 107

 What are Collections? 107

13.2 Collections and Objects 108

 Referencing Collections 108
 Collections as Arrays 108
 Referencing Objects in Collections 109
 Referencing Objects as Items in Arrays 109

13.3 Adding and Deleting Objects 110

 Adding Items to Collections 110
 Deleting Items from a Collection 110

13.4 Looping Through Collections 111

 Deleting Objects in a Loop 111

13.5 Worksheet Examples 112

 Protecting and Unprotecting Worksheets 112
 Hiding all but One Worksheet 112
 Consolidating Worksheets 113
 Dividing a List into New Worksheets 114

13.6 Chart Examples 115

 Changing Chart Types and Formats 115
 Creating a Chart on Every Worksheet 115
 Looping Over Chart Series 116
 Looping Through Data Points 116

13.7 Table Examples 117

 Creating a Table on Each Worksheet 117
 Looping Through Tables 117
 Table Columns 118
 Adding Table Rows 118

14 ERROR HANDLING Page

14.1 What is Error Handling? 119

 The Try Catch Statement 119
 The Finally Block 120
 The Error Object 120

14.2 Throwing Exceptions 121

 The Throw Statement 121

14.3 Errors in Functions 122

 Catching Errors in the Calling Function 122
 Throwing Errors in a Called Function 122
 Catching Errors in a Called Function 123

TABLE OF CONTENTS (5 of 5)

© Copyright 2024 Page 6

15 CRIB SHEET Page

15.1 Office Scripts Reference 124

 Selecting and Activating Things 124
 Selecting a Range Relatively 125
 Using Variables 126
 Conditional Statements 127
 Looping 128
 Creating Functions 129

Chapter 1 - Getting Started

© Copyright 2024 Page 7

CHAPTER 1 - GETTING STARTED

1.1 Introduction to Office Scripts

This chapter introduces you to Office Scripts, beginning with the answers to a few simple questions.

What are Office Scripts?

Office Scripts are small programs used to automate tasks in Microsoft Excel. You write code in the
TypeScript language and you can either record the steps or write your program from scratch.

What do I need to use Office Scripts?

According to Microsoft, these are the three requirements for using Office Scripts:

1) Excel for Windows, for Mac, or on the web.

2) OneDrive for Business.

3) Any commercial or educational Microsoft 365 license with access to the Microsoft 365 Office
desktop apps.

A basic Office Script to add
a value to the end of a list
and apply some formatting.

Chapter 1 - Getting Started

© Copyright 2024 Page 8

Can’t I already Automate Excel?

If you’re thinking that Office Scripts sound a lot like VBA macros, you’re right! In fact, there are three
main ways to automate Excel, summarised in the table below:

Method What you can do
Office Scripts Automate the desktop or online version of Excel.

VBA Macros Automate any desktop Office application.

Office Add-Ins Create an add-in to extend the features of any desktop or online Office application.

Why use Office Scripts and not VBA?

Office Scripts allow you to do some things you can’t do with VBA macros, as described in the table
below:

Feature Description
Excel online You can use Office Scripts to automate workbooks in the web version of Excel.

Power Automate You can run Office Scripts from a Power Automate flow.

External APIs Office Scripts support calls to external APIs which can provide data to your files.

Better security An Office Script only has access to the workbook in which it is running, unlike VBA
which has access to your entire computer.

What are the Limitations?

Office Scripts have several limitations compared to VBA and Office Add-Ins, as described in the
table below:

Feature Description
Excel only Currently, Office Scripts can only be used in Excel. Office Add-Ins can also work with

Word, PowerPoint, Outlook, OneNote and Project. VBA can use OLE and COM
libraries to control a variety of other applications, including the Microsoft Office apps.

No events VBA and Office Add-Ins can respond to events to make code run automatically. Office
Scripts must be run explicitly by the user.

Single workbook An Office Script only has access to the workbook in which it is running. Even something
as simple as copying a value from one workbook to another requires the use of a Power
Automate flow.

User interface Office Scripts don’t have access to any of the user interface elements of Excel. This
means that you can’t display dialog boxes or similar UI elements. If you need to create
a user-interface it would be better to use VBA or to create a full Office Add-In.

Chapter 1 - Getting Started

© Copyright 2024 Page 9

1.2 Preparing to Write Office Scripts

This section shows you the basic things you need to do before you can write your first script.

The Automate Ribbon Tab

The Automate tab of the ribbon contains the tools you need to write Office Scripts.

If you’re using the desktop version of Excel, the Automate tab may not appear automatically. You
can see how to display it in the diagram below:

Select Automate in
the ribbon to see
tools for working
with Office Scripts.

a) Right-click any ribbon tab (here
we’ve chosen the Home tab) and
choose Customize the Ribbon...

b) On the right side of the dialog
box, check the Automate box.

c) Click OK to add the Automate
tab to the ribbon.

Chapter 1 - Getting Started

© Copyright 2024 Page 10

The Code Editor

You edit Office Scripts in the Code Editor window in Excel. You can open the Code Editor in several
ways; a simple option is to choose Automate | All Scripts from the Excel ribbon.

In the desktop version of Excel you can move and resize the Code Editor window by clicking and
dragging its title bar.

Click All Scripts to
see the Code Editor.

The Code Editor
appears on the right of
the Excel window.

You can click here to
create a new script.

This area will show a
list of existing scripts
and gives you a quick
way to open them.

You can change the
width of the Code
Editor (you will
definitely want to
increase this!) by
clicking and dragging
the vertical divider.

Click and drag the title bar of the Code
Editor to move it.

If you leave the Code Editor floating over
the Excel window you can click and drag
the window borders to resize it.

You can drag the Code Editor window to
the left or right of the Excel window to
dock it in position.

Chapter 1 - Getting Started

© Copyright 2024 Page 11

1.3 Writing Your First Script

This section shows you how to write a simple program to add text to a cell and apply some formatting
to get used to the basics of writing code.

Creating a New Script

Start by creating a new workbook in either the desktop or online version of Excel and then choose
to create a new Office Script.

The Basic Structure of a Script

You can see the basic structure of your new script in the diagram below:

Your new script appears in the
Code Editor window. Excel will
immediately save the script to
the default Office Scripts folder
in OneDrive.

You can create a new script by choosing Automate | New
Script from the ribbon. Alternatively, click New script at the
top of the Code Editor window.

The result of running the
script is this beautifully
formatted cell!

The function contains a single line of code consisting of a comment. You can use comments to annotate your code.

The function has a parameter called workbook which gives your
code access to the Excel file that you currently have open.

The instructions of the
function are contained in
a set of curly brackets, or
braces.

The script contains a function called main
which acts as a container for your code.

Chapter 1 - Getting Started

© Copyright 2024 Page 12

Adding a Comment

You can add your own comments to your code to provide helpful reminders of what it is meant to do.

Writing Basic Instructions

Our first instruction will write the name Wise Owl into the currently selected cell in the workbook. To
do this:

1) On a new line in the script, begin typing the word workbook (take care when doing this –
TypeScript is a case-sensitive language!).

2) After the word workbook, enter a full stop and begin typing getActiveCell.

3) After getActiveCell, open and close some round brackets.

4) Enter another full stop followed by setValue then an open round bracket and double-quotes.

Click at the end of the line 2 then press Enter twice to
provide a new line on which to write your comment.

Type two forward slashes to begin the comment and
follow these with anything you feel is appropriate.

As you begin typing you’ll see a list
of options matching what you’ve
typed so far. To select an item
from this Intellisense list you can
press Tab or Enter or click on the
word with the mouse.

Use the Intellisense
list to help you finish
entering the word.

You can type in the open round
bracket and the closing bracket will
be added for you automatically.

The other double-quote and closing
round bracket will be added for you
automatically.

Chapter 1 - Getting Started

© Copyright 2024 Page 13

5) Between the double quotes, enter the name you want to write into the cell.

6) Complete the instruction by adding a semicolon to the end of the line.

Adding More Instructions

You can continue adding as many instructions as you need to complete your program. The diagram
below shows the complete script with two extra instructions and relevant comments:

Running the Script

You can see how to run your finished script in the diagram below:

Experienced VBA programmers should be careful not to press F5 to run your code.
In the online version of Excel this will refresh the page and close the Code Editor!

Wise
Owl’s
Hint

You can change the text
in the double quotes to
anything you like.

Each TypeScript instruction
ends with a semicolon.

We’ve deleted the first
comment to tidy up the
code.

The pattern of the new
instructions is similar to
the first one we added.

Click Run at the top of the Code Editor to run the script that you
currently have open.

A message appears to tell you
the code is running or, if you’re
unlucky, that the code has
failed! You can click Stop if
you need to abandon a script
that appears to be stuck. The beautiful end result!

Chapter 1 - Getting Started

© Copyright 2024 Page 14

1.4 Code Editor Settings

Changing Code Editor Settings

To change Code Editor settings you first need to open a script file.

A Note on Visual Studio Code

If you’re working in the online version of Excel, you can enable the Visual Studio Code connection
option. You can then open a script in the Visual Studio Code web application, as shown below:

Click ... at the top right of the Code Editor and choose Editor Settings
from the menu.

To return to your script, click
this arrow.

You can change the Theme
to alter the appearance of
the editor. The example
below uses the Dark theme.

You can enable a Minimap
of your script which appears
at the top right of the code
window.

The Folding option allows you to collapse and expand sections of your
code contained within different types of brackets.

With the Folding option enabled you can
click arrows like this one to collapse and
expand sections of your script.

This option allows you to edit
a script in the online version
of Visual Studio Code.

Use the menu at the top right of
the code window and choose
Open in VS Code.

You can edit the script
in the new tab.

You can close the Visual Studio tab or click
Close to return to the Code Editor in Excel.

Chapter 2 - Working with Script Files

© Copyright 2024 Page 15

CHAPTER 2 - WORKING WITH SCRIPT FILES

2.1 Office Script Files

This section explains the basics of working with Office Script files.

Viewing Existing Script Files

You can see your recently used and sample scripts in the Automate tab in the Excel ribbon.

To see all your scripts, choose Automate | All Scripts from the Excel ribbon.

The More Options Menu

You can use a script’s More options menu to perform several useful tasks on it.

The list of script files appears
in the Code Editor window.

Click View more scripts to open a dialog box which lets you browse to
other folders in OneDrive and SharePoint.

You can click the file location
to open it in OneDrive.

You can click the script name
to see its details, as shown on
the right.

Your Office Scripts appear in a
gallery. You can click a script
to see its details in the Code
Editor window.

Hover over a script in the list then
click the three vertical dots to
open the More options menu.

You can open the More options
menu when the file is open by
clicking the three horizontal dots.

The menu allows you to perform
several useful tasks on the file.

Chapter 2 - Working with Script Files

© Copyright 2024 Page 16

Creating a New Script File

The simplest way to create a new script is to choose Automate | New Script from the Excel ribbon.

Opening an Existing Script

You can open an existing script to edit its code as shown in the diagram below:

Renaming an Open Script

You can rename a script file, even if you’re currently editing it.

Deleting a Script

You can delete a script from the More options menu, even if you are currently editing it.

The new script opens ready
for editing. Excel saves the
script for you in the default
save location.

Hover the mouse over the script and then
click the pencil icon which appears.

Alternatively, you can choose Edit from
the script’s More options menu.

Click the script name or choose Rename from the More options menu.

Type the new name for the script file and then press Enter to rename it.

Choose Delete from the
More options menu.

Click Delete to confirm
your choice.

Chapter 2 - Working with Script Files

© Copyright 2024 Page 17

2.2 Saving Script Files

Where Office Scripts are Saved

By default, Office Script files are saved in the Documents/Office Scripts folder in OneDrive.

Saving an Open Script

You can save the script that you’re currently working on in the default folder as shown below:

The Save As Option

You can choose to save your script in a different location as shown below:

Click here to save the script you have open.

You’ll see a confirmation message like this.

You can click the file location of a script to
open the folder in OneDrive.

Office Script files have the osts filename
extension.

a) Pick Save script as from the More options menu.

b) Navigate to the folder you want to save the script
into. You can create a new folder by clicking the
button at the top right of the dialog box.

c) Click Save to save
the file in its new
location.

Chapter 2 - Working with Script Files

© Copyright 2024 Page 18

2.3 Sharing Scripts

Scripts saved to your OneDrive are accessible only to you. If you’d like others to use your scripts,
you’ll need to share them in some way.

Sharing a Script

The first step in sharing a script is to share it in a workbook. To do this, first open the workbook you
want to share the script in.

You’ll also need to give other people access to the workbook, as shown in the diagram below:

Stopping Sharing a Script

The diagram below shows how you can reverse the process of sharing an Office Script:

a) Choose Share from the script’s
More options menu.

b) Click Share to confirm
that you want to share
the script. The script’s
icon changes to show
that it is being shared:

a) Click the Share menu in the
top right of the Excel window
and choose Share.

b) In the dialog box, configure
with whom the workbook is to
be shared.

c) Share the file
by sending a
link in an email,
or by copying
the link and
distributing it
another way.

a) From the script’s
More options menu,
choose Stop
sharing.

b) On the dialog box which appears, choose whether to stop
sharing in all workbooks or just the currently open one, and
then click Stop sharing.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

WHAT WE DO

ONLINE
TRAINING

MANCHESTER
OR LONDON

AT YOUR
OFFICE

BESPOKE
CONSULTANCY

O
F
F
I
C

E

3
6

5

Microsoft

Excel
 ✓ ✓ ✓ ✓

VBA

macros
 ✓ ✓ ✓ ✓

Office

Scripts
 ✓ ✓

Microsoft

Access
 ✓

P
O

W
E
R

P
L
A

T
F
O

R
M

Power BI

and DAX
 ✓ ✓ ✓ ✓

Power

Apps
 ✓ ✓

Power

Automate
 ✓ ✓ ✓ ✓

S
Q

L

S
E
R

V
E
R

Reporting

Services
 ✓ ✓ ✓ ✓

Report

Builder
 ✓ ✓ ✓

Integration

Services
 ✓ ✓ ✓ ✓

Analysis

Services
 ✓ ✓

 C
O

D
I
N

G

L
A

N
G

U
A

G
E
S

SQL ✓ ✓ ✓ ✓

Visual C# ✓ ✓ ✓ ✓

Python ✓ ✓ ✓ ✓

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

