
Introduction to Python

Sample manual - first two chapters

Manual 1208 - 152 pages –

TABLE OF CONTENTS (1 of 5)

© Copyright 2025 Page 2

1 GETTING STARTED Page

1.1 Introducing Python 7

 Installing Python 7

1.2 Choosing an Editor 8

 Choices of Editor 8

1.3 Using IDLE 8

 Running Single Commands (Interactive
Mode)

9

 Colour-Coding / Case Sensitivity 9
 Creating, Saving and Running Programs 10

2 BASIC CODING Page

2.1 Comments 11

 Single-line Comments 11
 Multi-line Comments 11
 Commenting Out Lines (and

Uncommenting)
11

2.2 Variables 11

 Declaring Variables 12
 Variable Types 13
 Determining Type 13
 Assigning Values to Variables 14
 Deleting Variables 14

2.3 Rules of Arithmetic 15

2.4 Basic Strings 16

 New Lines and Tabs 16
 Quotation Marks 16
 Backslash Characters 16
 Concatenating Text 17
 Converting Numbers to Text 17
 Getting Inputs from Users 17

2.5 Testing Conditions 18

 Simple Conditions 18
 Multiple Conditions 18
 Testing for Equality 19
 Combining and Negating Conditions 19

3 VISUAL STUDIO CODE Page

3.1 Installing Visual Studio Code 20

3.2 The Visual Studio Code Window 21

 The Activity Bar 21
 Changing your Theme 21

3.3 Installing Extensions 22

 Installing Extensions (using Python as an
Example)

22

3.4 Using Terminal Window 23

 Viewing Terminal Windows 23
 Interactive Python Sessions 23

3.5 Configuring VS Code Settings 24

 Changing Settings using The Command
Palette

24

 Changing Settings using the Menu 24
 Using Settings (JSON) 25
 Automatically Showing Default Settings 25
 Copying Default Settings to Customise

Them
26

 Typical Default Settings 26

3.6 Other Useful VS Code Tips 27

 Commenting and Uncommenting Code 27
 Using Multiple Insertion Points 27
 Global Changes using Multiple Insertion

Points
28

 Entering and Leaving Zen Mode 28
 Expanding and Collapsing Code 29
 Restoring Default Zoom 29

4 WRITING AND RUNNING

PROGRAMS
Page

4.1 Files and Folders 30

 Opening a Folder 30
 Creating Python Files 30

4.2 Running Programs 31

 Clearing the Terminal Window 31
 Three Ways to Run a Program 31

4.3 Basic Debugging 32

 Setting and Unsetting Breakpoints 32
 Debugging 32

4.4 Terminal Input (Revisited) 33

4.5 The Code Runner Extension 34

 Installing the Extension 34
 Running Programs 34
 Changing the Run Key Combination 35
 Customising Code Runner 36

TABLE OF CONTENTS (2 of 5)

© Copyright 2025 Page 3

5 VIRTUAL ENVIRONMENTS Page

5.1 What Virtual Environments Are 37

5.2 Creating a Virtual Environment 38

 Creating and Opening a Folder 38
 Creating a Virtual Environment 39
 Structure of a Virtual Environment 39
 Activating a Virtual Environment 40
 Selecting an Interpreter 41

6 IMPORTING MODULES Page

6.1 Importing Modules 42

 Importing a Module 42
 Giving Modules Aliases 43
 Importing Specific Functions 43
 Importing Functions and Using Aliases 43

6.2 Some Useful Built-In Modules 44

6.3 Using External Modules 45

 Installing a Module 45
 Using Installed Modules 46
 Module Not Found Error 46
 Listing External Modules 46
 Viewing External Modules 47

7 FORMATTING TEXT AND NUMBERS Page

7.1 Basic Ways to Format Output 48

 Using the F Prefix 48
 Using the Format Function 49
 Placeholder Order can Vary or be Omitted 49

7.2 Formatting Numbers 50

8 RANGES AND LOOPS Page

8.1 While Loops 51

 Syntax of the While Command 51
 Example of a While Loop 52
 Using Else with While 52

8.2 Break, Continue and Pass 53

8.3 For Loops 54

8.4 Ranges 55

9 DEBUGGING Page

9.1 Overview 56

9.2 Preparing to Debug 57

 Step 1 – Creating a Configuration File 57
 Step 2 - Setting a Breakpoint 58
 Step 3 – Turning off the JustMyCode Flag 58

9.3 Debugging 59

9.4 Viewing and/or Changing Variable
Values

60

 The Variables Pane 60
 Watching Variables and Expressions 60
 The Debug Console 61

9.5 Breakpoints 62

 Conditional Breakpoints 62
 Disabling Breakpoints 63
 Deleting Breakpoints 63
 Removing or Disabling All Breakpoints 63

9.6 Debugging Function Calls 64

 Stepping Into, Over and Out of Functions 64
 The Call Stack 65
 Function Breakpoints 65

9.7 Logging Breakpoints 66

TABLE OF CONTENTS (3 of 5)

© Copyright 2025 Page 4

10 SEQUENCES Page

10.1 Introduction to Sequences 67

 Main Types of Sequences in Python 67
 Reminder of Iterating Over Sequences 67

10.2 Tuples versus Lists 68

 Mutability (Lists versus Tuples) 68

10.3 Slicing Sequences 69

 Examples of Slicing for Lists 69
 Examples of Slicing for Ranges 70
 Examples of Slicing for Strings 70
 Missing Items when Slicing (Step Values) 71

10.4 Joining and Splitting Sequences 72

 Joining Sequences Together 72
 Concatenating Sequence Members 72
 Splitting Strings to Generate Sequences 73
 Splitting a String into Before and After

Text
73

10.5 Unpacking Sequences 74

10.6 Working with Sequences 75

 Getting the Length of a Sequence 75
 Getting the Number of Items of a Specific

Value
75

 Aggregating a Sequence’s Items 75
 Getting the Index Number of an Item 76
 Returning Sequence Index Numbers and

Values
76

 Mixing Data Types 77

10.7 Examples of Sequences 78

 Listing the Files in a Folder (ListDir) 78
 Listing the Files in a Folder using Glob 78
 Dividing Text into Lists of Words or

Phrases
79

 A Tuple Listing Built-In Module Names 79
 Scraping Websites for Links 80

11 MANIPULATING LISTS Page

11.1 Adding and Removing Items 81

 Inserting Items 81
 Appending to and Extending Lists 82
 Removing Items from Lists by Value 82
 Popping Items from a List by Position 83
 Clearing the Contents of Lists 83

11.2 Changing the Order of Lists 84

 Sorting Lists 84
 Reversing Lists 84

11.3 Shallow and Deep Copying of Lists 85

 Assigning is not Copying 85
 Shallow Copying 85
 Deep Copying 86

12 COMPREHENSIONS AND

GENERATORS
Page

12.1 Comprehensions 87

 Basic Comprehensions 87
 Comprehensions with Conditions 88
 Multiple Loops within Comprehensions 88

12.2 Generators 89

 Disadvantages of Generators 89

13 FILES AND FOLDERS Page

13.1 Writing to Text Files 90

13.2 Using With to Close Files
Automatically

91

13.3 Reading Files 92

 Checking if Files and Folders Exist 92
 Reading Line by Line or Reading

Characters
92

 Reading All the Lines in a File using
Readlines

93

 Reading All the Lines in a File by Looping 93

13.4 Looping Over Files 94

 Looping Over Files in a Folder 94
 Processing Files in a Folder 95
 Looping Recursively 95

14 ERROR-HANDLING Page

14.1 Trapping for Errors 96

 Error Types 96
 Trapping General Errors 96
 Trapping Specific Errors 97
 The Full Range of Commands 97

14.2 Raising Exceptions 98

TABLE OF CONTENTS (4 of 5)

© Copyright 2025 Page 5

15 NUMBERS, STRINGS AND DATES Page

15.1 Overview 99

15.2 Working with Numbers 100

 Mathematical Operators 100
 Built-in Numerical Functions 100
 Math Functions 101

15.3 Working with Boolean Values 102

 Boolean Operators 102
 All and Any 102

15.4 Working with Dates (and Times) 103

 Getting Dates (and Times) 103
 Formatting Dates 104
 Formatting Times 104
 Displaying Calendar Months 105
 Displaying Day and Month Names 105

15.5 Working with Strings 106

 Escape Characters 106
 Avoiding Escape Characters 106
 Joining and Splitting Text 107
 Repeating Text 107
 Extracting Text (Slicing) 107
 Counting and Length 108
 Changing Case 108
 Padding 108
 Removing and Replacing Text 109
 Translating Text 109
 Finding Text 110
 Checking Text Content 111

16 SETS Page

16.1 Some Set Concepts 112

16.2 Working with Sets 113

 Creating Sets 113
 Set Operations 113

16.3 Converting between Sets and Lists 114

 Converting Sets to Lists 114
 Converting Lists to Sets 115

16.4 Examples of the Use of Sets 116

 Counting Unique Letters or Words 116
 Finding the Differences between Lists 117

17 DICTIONARIES Page

17.1 Creating Dictionaries 118

 What is a Dictionary? 118
 Creating Dictionaries 118

17.2 Using Dictionaries 119

 Looking Up Items 119
 Looping Over Dictionary Items 119
 Adding. Editing and Deleting Items 120
 Sorting Dictionaries 120

18 WRITING FUNCTIONS Page

18.1 The Need for Functions 121

 Advantages of Using Functions 121

18.2 Writing a Function 122

 Step 1 – Identifying the Input Arguments 122
 Step 2 – Specifying the Output Data

Type
122

 Step 3 – Reviewing the Syntax Required 123
 Step 4 – Writing your Functions 123

18.3 Learning Points 124

 Variable Names are Isolated 124
 Arguments can have Different Names 124
 Functions can be Declared in any Order 125
 Your Function could Crash in Many Ways 125
 Data Types are for Guidance Only 126

18.4 Ways to Pass Arguments 127

 Arguments by Name or Position 127
 Forcing Positional or Named Arguments 128
 Optional Arguments 128

18.5 Arbitrary and Keyword Arguments 129

 Passing an Unknown Number of
Argument Values

129

 Passing an Arbitrary Set of Arguments 130

18.6 Using Modules for Functions 131

18.7 Modular Programming 132

18.8 Docstrings 133

TABLE OF CONTENTS (5 of 5)

© Copyright 2025 Page 6

19 WORKING WITH EXCEL Page

19.1 Getting Started with Openpyxl 134

 Installing Openpyxl 134
 Getting Help with OpenPyXl 134

19.2 Working with Workbooks 135

 Creating and Saving Workbooks 135
 Opening and Closing Workbooks 135

19.3 Working with Worksheets 136

 Inserting Worksheets 136
 Our Example Workbook 136
 Getting a List of Worksheet Names 137
 Getting a Worksheet Itself 137
 Getting and Setting the Active Worksheet 137
 A Worked Example 138
 Looping over Worksheets 138

19.4 Working with Cells 139

 Referring to Single Cells 139
 Useful Cell Properties 139

19.5 Looping over Cells 140

 Looping over Row and/or Column
Numbers

140

 Offsetting Cells 140

20 PYTHON CODING USING AI TOOLS Page

20.1 Choosing an AI Tool 141

20.2 Generating Code 142

 Our Example – Scraping a Website 142
 A Critique of the Code Generated 143
 Problems with the Code 143
 Simplifying the Code 144

20.3 Refactoring / Changing Code 145

 Global Variable Changes 145
 Stylistic Changes 145

20.4 Optimising Code 146

 Writing Code more Efficiently 146
 Changing the Algorithm 146

20.5 Debugging 147

 Our Example – Reading a Shopping List 147
 What to Ask 147
 Listing the Bugs 148

20.6 Researching Modules 149

Chapter 1 - Getting Started

© Copyright 2025 Page 7

CHAPTER 1 - GETTING STARTED

1.1 Introducing Python

Python is the only programming language named after a BBC comedy series. It was originally
created by a Dutch programmer called Guido van Rossum.

Installing Python

You can download Python from
https://www.python.org/downloads/ :

Here are our recommended settings:

The author has programmed extensively in VB, C# and SQL, and is an enthusiastic
convert to Python. It will let you develop powerful programs quickly, although its
management of paths and packages will have you tearing your hair out!

Wise
Owl’s
Hint

Click on this button to install the latest version
of Python at the time of writing.

a) Managing paths in Python is a pain! Do
yourself a favour and tick this box to help
Windows programs run Python easily.

b) You can choose
which bits of
Python you want to
install, although it’s
probably best just
to go with the
defaults.

You’ll certainly want to
install pip (which will help
you import modules to
accomplish different
tasks), td/tk (which will
help you create GUI
applications) and IDLE (a
Python editor – see next
page).

https://www.python.org/downloads/

Chapter 1 - Getting Started

© Copyright 2025 Page 8

1.2 Choosing an Editor

Python comes with its own built-in editor called IDLE
(named after Eric), but it’s a bit primitive:

Choices of Editor

Here are some possible editors that you could choose:

Editor Notes

Visual Studio Code A generic code editor maintained by Microsoft but available free of charge (don’t confuse
it with Visual Studio, which is a completely different program – see below).

PyCharm An editor devoted to writing Python code. Reviews online suggest that it can be very slow
to work with, and some users will need to upgrade to the paid Premium edition.

Visual Studio If you already spend time working in Visual Studio, you may find it easiest to use this as
your development environment (although it’s a bit of a big beast!).

Jupyter Notebooks If you work in machine learning or AI you may well choose this powerful coding
environment.

There are many other Python editors out there with names like Atom and Sublime,
as well as tools which will manage your Python code such as Anaconda. This
courseware uses IDLE to get started, then switches to Visual Studio Code.

Wise
Owl’s
Hint

A program written in IDLE. Although it’s a great package for getting
started, it doesn’t have true Intellisense (which in this owl’s view rules
it out as a serious development environment).

Chapter 1 - Getting Started

© Copyright 2025 Page 9

1.3 Using IDLE

IDLE was (allegedly) named after Eric Idle,
one of the Monty Python team. There’s also
a Python editor called Eric, but none called
Cleese or Palin that Wise Owl know of.

When you install Python, you should
automatically get IDLE at the same time:

Running Single Commands (Interactive Mode)

You can run any single command by typing it in at the command prompt and pressing ↩ :

Colour-Coding / Case Sensitivity

Note that Python is a case-sensitive language!

The acronym
does work well, it
has to be said.

The latest version
of the IDLE Python
editor (at the time
of writing).

a) The >>> text is called
the command prompt -
it’s waiting for you to
type in a valid Python
command.

b) The print command
just displays the
information in
parentheses in IDLE.

c) The output of your
command is the
message that you
chose to print.

Here IDLE hasn’t colour-coded the word Print, because it
doesn’t recognise it as a valid Python command ...

... and displays an error when you press ↩ to try to run
the command.

Chapter 1 - Getting Started

© Copyright 2025 Page 10

Creating, Saving and Running Programs

If you want to execute a sequence of commands, you don’t have to run each one individually; instead
you can save them in a file:

You can obviously open existing files that you’ve previously created to run their code
instead.

Wise
Owl’s
Hint

a) Choose to create a new file from the File menu (as this shows, you can
instead press Ctrl + N).

b) Type in a sequence of valid Python statements (the # symbol denotes
a comment, which will be ignored – more on comments shortly).

c) Choose this option to run your code (although it’s quicker to press F5 instead
as a short-cut). You’ll be prompted to save your code in a file – until you do this
you won’t be able to run it.

d) Your file will be saved
with an extension of .py.

e) You can now see the
output from your
program. When
you’ve finished, click
on the cross at the
top right to close
down the IDLE shell
and return to your
program.

Chapter 2 - Basic Coding

© Copyright 2025 Page 11

CHAPTER 2 - BASIC CODING

2.1 Comments

Good programmers add comments to their code, to explain what it is meant to do!

Single-line Comments

Most Python comments begin with a single # character:

Multi-line Comments

You can use three double-quotation marks in a row to mark
out multiple comment lines:

Commenting Out Lines (and Uncommenting)

If you want to avoid running certain lines without removing them, you can comment them out:

You can select commented out lines and press Alt + 4 to reinstate them (or choose the
Uncomment Region menu option shown above).

Each separate line has to begin with its own # character. The red lines
in this program will be completely ignored by the Python interpreter.

These lines will be treated as comments (confusingly, IDLE chooses to
show them in green, not red).

a) Select part or all of the lines you want to comment out
and press Alt + 3 or choose this menu option.

b) For some reason IDLE puts two hashes in
front of each commented out line.

Chapter 2 - Basic Coding

© Copyright 2025 Page 12

2.2 Variables

A variable is a space inside your
computer which holds a single bit of
information (be it a number, date,
string of text or other value).

Declaring Variables

Here’s how you declare an integer variable in 4 commonly used programming languages:

Language Variable declaration

C#

SQL

JavaScript

Visual Basic

In Python, by contrast, you don’t declare a variable before using it (the act of assigning a value to a
variable automatically declares it at the same time).

The Python naming convention is to avoid camel case but instead use underscores
to divide the parts of a variable name. Thus you might call the second variable above
meaning_of_life, but wouldn’t call it MeaningOfLife.

Wise
Owl’s
Hint

For experienced programmers in other languages this will be one of the weirdest
things to get used to about Python, but it’s a good idea (to the extent that you will
now probably resent having to formally declare variables in other languages).

Wise
Owl’s
Hint

Two
examples
of Python
variables.

Here we’ve created a variable called answer, but are trying to
print out the value of an (uncreated) variable called answe.

The Python interpreter points out the error of
your ways when you try to run your program.

Chapter 2 - Basic Coding

© Copyright 2025 Page 13

Variable Types

Here are some of the common data types in Python:

Data type What it contains

str Any string of text

int Any whole number

float Any decimal number

bool Something which can be either true or false

Determining Type

Python determines the type of a variable from the value you assign to it. You can see this by using
the type function to investigate a variable’s data type:

It is typical of Python that the old long type used to denote very large integers is no
longer needed, and int covers everything from 0 to infinity!

Wise
Owl’s
Hint

This program will assign different values to the same
variable. After assigning each value, we print out the
type of the variable.

Here’s what this program would output:

Chapter 2 - Basic Coding

© Copyright 2025 Page 14

Assigning Values to Variables

You can assign values to individual variables as we’ve already seen by using this convention:

If you’re assigning two or more variables to the same value, you can do this in a single line:

You can do multiple assignments on the same line (although this owl thinks it makes your code
harder to read):

Deleting Variables

Python will delete any variables that you’ve created when the program containing them finishes, but
sometimes you may want to pre-empt this. You can do this using the del command:

variable_name = value_for_variable

This code would create 3
variables, but they would all
contain the same value if we
hadn’t subsequently changed
the value of one of them.

This code would create (then
show the values of) one string
and two integer variables:

Once you’ve deleted a variable, not surprisingly you
can no longer refer to it. Running this program would
give the following error:

Chapter 2 - Basic Coding

© Copyright 2025 Page 15

2.3 Rules of Arithmetic

Python follows the same order of arithmetic operation as most other computer packages (taught in
schools as BODMAS, standing for Brackets Of Division Multiplication Addition Subtraction).

In addition to the standard operators of + , - , * and / you can also use these:

Operation Operator

Raising to the power * * The following code excerpt would return 210, or 1024:

Taking the remainder
or modulus of a
number

% The following code would return 1 (the remainder when
you divide 22 by 7):

You can use parentheses to change the
default order of operation. This code would
give the following output:

For the second calculation, Python sums the
first two numbers before multiplying the result
by the third one.

Chapter 2 - Basic Coding

© Copyright 2025 Page 16

2.4 Basic Strings

A later chapter will give much more details on the tricks and functions you can use when working
with strings of text; this page just shows a few basic ones.

New Lines and Tabs

You can use the escape characters \n and \t to include new lines and tabs in your output:

Quotation Marks

To create a string which includes quotation marks, either use an escape character or switch from
double to single quotation marks (the second way seems easier):

Backslash Characters

Since the escape character is a \ , how can you include this in a string of text? The answer is to
repeat it:

Tabs are an unreliable way to align output, as the example above shows (the first
line includes two tabs, but the second only one). A better way to align text is to use
the ljust, rjust and/or center functions (covered in a later chapter)

Wise
Owl’s
Hint

This program would produce the
following output:

Both of these ways would embed quotation marks in the relevant
strings of text, to give this output:

This program would give the following output:

Chapter 2 - Basic Coding

© Copyright 2025 Page 17

Concatenating Text

Use the + symbol to join bits of text together:

Converting Numbers to Text

You can not join a string with a number; instead, you must first convert the number to a string using
the str function.

Here’s a working version of the code above:

Getting Inputs from Users

You can pause a program to ask a user to input values using the input function - for example:

Note that the input function always gives a string of text, so there’s no need to
convert the 42 above to a string before concatenating it with the user’s name.

Wise
Owl’s
Hint

This program would join the two variables together with
a space between them, to give this:

This program will crash because it is trying to join a string
of text (your_name) with an integer (your_age):

Note the use of a backslash at the end of this line to act as a continuation character, allowing a single programming
command to span multiple lines.

You must use the str function to convert numbers to text
before joining them with other bits of text. This would give:

Running this program (and inputting the values Bob and
42 at the prompts) would give this output:

Chapter 2 - Basic Coding

© Copyright 2025 Page 18

2.5 Testing Conditions

Simple Conditions

You can use the if statement to test conditions in Python, but you must follow it with a colon : and
indentation:

Multiple Conditions

If you want to test whether a condition is true or false, use else:

For multiple conditions, use as many elif statements as you need:

From version 3.10 Python will have a powerful match statement giving the
equivalent of the C#/JavaScript switch statement, the VB SELECT CASE statement
or the SQL CASE WHEN statement, reducing the need for multiple elif statement
blocks like the one shown above.

Wise
Owl’s
Hint

In most languages you would indent your code at this
point by pressing Tab to make it more readable. In
Python this space is a vital part of your code, and
without it you’ll get a run-time error.

This program will display a different message for someone
under 18 than for an adult. Here’s a typical output from
running the program:

Here the program tests (in this order):

• Whether the age is less than 18
• Whether the age is less than 40 (knowing that it can’t be

under 18, otherwise it would have passed the first test)
• Whether the age is more than 60

The program only prints out a welcome message for people who
don’t meet any of these conditions. A typical output might be:

Chapter 2 - Basic Coding

© Copyright 2025 Page 19

Testing for Equality

When you are testing if two values are equal in Python, you
must use two = signs in a row.

Combining and Negating Conditions

You can use the and, or and not keywords to
test different combinations of conditions:

Python also treats the following two statements as identical:

If you’re not used to it, this Python feature (and the fact that everything is case-
sensitive) will probably account for about 90% of the bugs that you create!

Wise
Owl’s
Hint

This can be a very disconcerting error message to see – what could you
possibly have done wrong? The answer is that because you’re testing
a condition you need to put this:

This program would output this::

This is because:

• This person is NOT coughing
• The person is either vaccinated OR masked (in fact,

they’re both)
• The person is masked AND vaccinated

The second test also checks that 18 is less than or equal to the value of the
variable age and that the value of the variable age is less than 65.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

What we do!

Basic

training
Advanced
training

Systems /
consultancy

O
ff

ic
e

 Microsoft Excel

 VBA macros

 Office Scripts

 Microsoft Access

P
o
w

er
 B

I,
 e

tc
 Power BI and DAX

 Power Apps

 Power Automate (both)

S
Q

L
 S

e
r
v
e
r

 SQL

 Reporting Services

 Report Builder

 Integration Services

 Analysis Services

C
o

d
in

g

 Visual C#

 VB programming

 MySQL

 Python

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

