
Excel VBA Fast Track

Sample manual - first two chapters

Manual 1166 - 325 pages –

TABLE OF CONTENTS (1 of 13)

© Copyright 2024 Page 2

1 THE VISUAL BASIC EDITOR Page

1.1 The Visual Basic Editor 15

 Displaying the Developer Ribbon Tab 15
 Opening the VB Editor 15

1.2 The VBE Screen 16

 Opening and Closing Windows 16
 Repositioning Windows 17
 Docking Windows 17

1.3 The Main VBE Windows 18

 The Project Explorer 18
 The Properties Window 18

1.4 VBE Settings 19

 The Options Dialog Box 19
 Changing Font Formatting Options 19

2 WRITING SIMPLE VBA CODE Page

2.1 Modules 20

 Inserting a Module 20
 Opening and Closing Modules 21
 Renaming Modules 21
 Naming Rules in VBA 21
 Naming Conventions 22
 Removing Modules 22
 Exporting Modules 22
 Importing Modules 23
 Copying Modules to Other Projects 23

2.2 Writing Procedures 24

 Types of VBA Procedure 24
 Inserting Procedures 24
 Starting a Subroutine 25
 Switching off Syntax Error Messages 26
 Setting the Scope of a Procedure 26

2.3 Writing Neat Code 27

 Commenting Your Code 27
 Commenting Out Multiple Lines of Code 28
 Using Blank Lines and Indenting 28
 Indenting Multiple Lines 29
 Changing Indenting Settings 29
 The Continuation Character 29

2.4 Writing Simple VBA Instructions 30

 Objects 30
 Methods and Properties 30

2.5 Tools to Help with Writing Code 31

 Choosing Which Tools are Enabled 31
 Using IntelliSense to Write Code Faster 31
 Using Tooltips 32
 Viewing Data Tips 32

3 SAVING AND OPENING FILES Page

3.1 Saving VBA Code 33

 Where is Code Stored? 33
 Saving VBA Code 33
 Choosing the Correct File Type 34

3.2 The Personal Macro Workbook 35

 Creating the Personal Macro Workbook 35
 Viewing the Personal Macro Workbook in

the VBE
35

 Viewing the Personal Macro Workbook in
Excel

36

 Saving the Personal Macro Workbook 36
 Where the Personal Macro Workbook is

Stored
36

3.3 Opening Files Which Contain VBA
Code

37

 Choosing to Enable VBA Content 37
 Macro Security Settings 37

3.4 Trusted Documents 38

 Viewing Trusted Document Settings 38
 Disabling Trusted Documents 38

4 RUNNING VBA CODE Page

4.1 Running Code from Excel 39

 Choosing from a List of Macros 39

4.2 Running Code from the VBE 40

 Running a Subroutine 40
 The Debug Toolbar 41
 Compiling Code 41
 Stepping Into and Through Code 42
 Reaching the End of a Procedure 42
 Interrupting a Running Procedure 43

4.3 When Things Go Wrong 44

 Syntax Errors 44
 Compile Errors 44
 Run-Time Errors 45

TABLE OF CONTENTS (2 of 13)

© Copyright 2024 Page 3

5 BASIC USER INTERFACES Page

5.1 Keyboard Shortcuts 46

 Assigning Keyboard Shortcuts in Excel 46
 Assigning Keyboard Shortcuts in Code 46

5.2 Form Control Buttons 47

 Drawing Form Control Buttons 47
 Editing Form Control Buttons 47

5.3 ActiveX Command Buttons 48

 Drawing ActiveX Command Buttons 48
 Attaching Code to the Click Event 48

5.4 AutoShapes and Pictures 49

 Inserting Shapes and Pictures 49
 Assigning a Macro to a Shape or Picture 49

5.5 The Excel Ribbon 50

 Modifying the Quick Access Toolbar 50
 Creating Ribbon Tabs 51

6 WORKING WITH RANGES Page

6.1 Referring to a Range Object 52

 Referring to a Single Cell 52
 Referring to a Block of Cells 52
 Using Range Names to Refer to Cells 53
 Referring to Non-Contiguous Ranges 53

6.2 The Cells Property 54

 Referring to a Cell with Row and Column
Numbers

54

 Referring to a Block of Cells 54
 Referring to Every Cell on a Worksheet 54

6.3 Rows and Columns 55

 The Range, Rows and Columns
Properties

55

 The EntireRow and EntireColumn
Properties

55

6.4 Referring to the Active or Selected Cell 56

 ActiveCell and Selection 56
 Activate vs. Select 56

6.5 The Offset Property 57

 Offsetting from the ActiveCell 57
 Offsetting a Block of Cells 57

6.6 The End Property 57

 The Four Directions of the End Property 58
 Finding the Start of a List 58
 Finding the Bottom Right Corner of a

Table
59

 Finding the Next Blank Cell in a Column 59
 Selecting from the Top to the Bottom of a

List
60

 Dealing with Blank Cells 60

6.7 Referring to Regions of Cells 61

 The CurrentRegion Property 61
 The CurrentArray Property 61

6.8 Referring to Special Cells 62

6.9 Referring to Used Cells 63

 Referring to the Used Range 63
 The Last Used Cell 63

7 COLOURS IN VBA Page

7.1 Excel Colours 64

 The Two Colour Properties of a Range 64
 The ColorIndex Colours 64

7.2 Colour Numbers and Names 65

 VBA Colour Constants 65
 Excel’s RGB Constants 65
 The RGB Function 65

TABLE OF CONTENTS (3 of 13)

© Copyright 2024 Page 4

8 DISPLAYING MESSAGES Page

8.1 The MsgBox Function 66

 Syntax and Parameters of a Message Box 66

8.2 Displaying Messages 67

 Displaying a Simple Message 67
 A Note on Using Parentheses 67
 Concatenating a Message 68
 Changing Text Alignment 68
 Using Multiple Lines 69
 Customising the Title 69

8.3 Icons and Buttons 70

 Modifying the Buttons 70
 Setting the Default Button 70
 Displaying Icons 71
 Combining Buttons and Icons 71

9 USER INPUTS Page

9.1 Asking Users for Input 72

 Where to Store User Input 72

9.2 Asking a Question with a Message Box 73

 The Possible Results of a Message Box 73
 Storing the Result of a Message Box 73
 Testing Which Button was Clicked 74

9.3 The VBA InputBox Function 75

 Syntax and Parameters of the InputBox
Function

75

 Using an Input Box to Ask a Question 76
 Setting a Default Value 76
 What Happens if You Click Cancel? 76
 Inputting Different Types of Data 77

9.4 The Excel-Specific InputBox Method 78

 Using the Excel Input Box 78
 Customising the Title and Default Value 78
 Setting the Data Type of the Input Box 79
 Entering an Invalid Value 79
 Selecting Cells 80
 Returning a Reference to a Range 80

10 VARIABLES AND DATA TYPES Page

10.1 Data Types in VBA 81

 Summary of the VBA Data Types 81

10.2 Declaring and Using Variables 82

 The Dim Statement 82
 Writing To and Reading From Variables 82

10.3 Declared vs. Non-Declared Variables 83

 Non-Declared Variables 83
 Explicitly-Declared Variables 83
 Forcing Explicit Variable Declaration 84

10.4 Variables and Data Types 85

 The Variant Data Type 85
 Declaring Multiple Variables 85
 Choosing the Correct Data Type 86

10.5 Converting Variable Data Types 87

 Implicit Data Type Conversion 87
 The Problem with Implicit Type

Conversion
87

 Explicit Data Type Conversion 88
 Checking for Dates and Numbers 88

10.6 The Scope of Variables 89

 Procedure Level Variables 89
 Module Level Variables 90
 Project Level Variables 90

10.7 Constants 91

 Declaring a Constant 91
 The Scope of Constants 91

TABLE OF CONTENTS (4 of 13)

© Copyright 2024 Page 5

11 WORKING WITH DATA Page

11.1 Manipulating Data 92

 The Three Main VBA Data Types 92
 The Basic VBA Operators 92
 Manipulating Values using Functions 93
 Why Some Functions End with a $ Sign 93
 Using Excel’s Worksheet Functions 93

11.2 Working with Numbers 94

 Testing if a Value is a Number 94
 Useful Numeric Functions 94

11.3 Working with Dates 95

 Testing if a Value is a Date 95
 Writing Dates in the VBE 95
 Arithmetic with Dates 95
 Useful Date Functions 96
 Intervals for Date Functions 97
 Setting the First Day of the Week 97
 Formatting Dates 97

11.4 Working with Strings 98

 Concatenating Strings 98
 Character Codes 98
 Special Character Constants 99
 Case Sensitivity 99
 Useful String Functions 100

12 TESTING CONDITIONS Page

12.1 The If Statement 101

 Single-Line If Statements 101
 The Else Clause 101
 Block If Statements 102
 Nested Ifs 103
 The ElseIf Statement 103

12.2 Logical Tests and Operators 104

 Comparison Operators 104
 Logical Tests and Boolean Values 104

12.3 Combining Conditions 105

 The Or Operator 105
 The And Operator 105
 The Xor Operator 105

12.4 Comparing Strings 106

 Testing if Two Strings are Equal 106
 Converting the Case of Text 106
 Making All Text Comparisons Case-

Insensitive
106

 Relative Comparisons with Strings 106
 The Like Operator and Wildcards 107

12.5 Conditional Functions 108

 The IIf Function 108
 The Switch Function 108

12.6 The Select Case Statement 109

 A Basic Select Case Statement 109
 Testing Multiple Values 109
 Testing a Range of Values 109

13 FOR NEXT LOOPS Page

13.1 The For Next Loop 110

 Looping a Set Number of Times 110
 The Step Statement 111
 Exiting from a For Next Loop 111
 Nesting For Next Loops 112
 Looping a Variable Number of Times 112

14 CONDITIONAL LOOPS Page

14.1 The Do Loop 113

 Exiting from a Do Loop 113

14.2 Do Until Loops 114

 Writing a Do Until Loop 114
 The Loop Until Statement 114
 Breaking Out of a Loop 114

14.3 Do While Loops 115

 Writing a Do While Loop 115
 The Loop While Statement 115

TABLE OF CONTENTS (5 of 13)

© Copyright 2024 Page 6

15 HOW VBA WORKS Page

15.1 Object Oriented Programming 116

 The Building Blocks of an Object
Oriented Language

116

15.2 Objects 117

 Referring to Objects by Name 117
 Referring to Objects by Index Number 117
 Qualifying References to Objects 118
 Using Keywords to Reference Objects 118
 Using Object Codenames 119
 Using Object Variables 119

15.3 Collections 120

 Referring to Collections 120

15.4 Methods 121

 Applying Methods to Objects 121
 Passing Arguments to Methods 121
 Returning Values and References from

Methods
122

 When to use Parentheses 122

15.5 Properties 123

 Writing to a Property 123
 Read-Only Properties 123
 Property Data Types 123
 Reading from a Property 124
 Properties and Parameters 124

15.6 Getting Help in VBA 125

 The Object Browser 125
 Context Sensitive Help 126
 Recording a Macro 126

16 FOR EACH LOOPS Page

16.1 Looping Through Collections 127

 The For Each Loop 127
 A Basic Example 127

16.2 Looping Over Worksheets, Charts and
Sheets

128

 Protecting all Worksheets 128
 Excluding Worksheets 128
 Looping Through Chart Sheets 129
 Looping Through All Sheets 129
 Looping Through Objects on a Sheet 129

16.3 Looping Over the Workbooks
Collection

130

 Processing all Open Workbooks 130

16.4 Looping Over a Collection of Range
Objects

131

 Specifying the Range to Loop Over 131
 Looping Through a Column of Data 131

16.5 Nesting For Each Loops 132

 Looping Over Shapes on All Worksheets 132
 Looping Through Sheets in All Open

Workbooks
132

TABLE OF CONTENTS (6 of 13)

© Copyright 2024 Page 7

17 DEBUGGING Page

17.1 Debugging Code 133

 The Debug Toolbar 133

17.2 Running Code 134

 Running a Procedure from Start to End 134
 Running a Procedure in Break Mode 134
 Stepping Through Code 135
 Changing the Next Instruction 135
 Editing Code in Break Mode 135

17.3 Debugging Modular Code 136

 Viewing the Definition of a Procedure 136
 Stepping Over a Procedure Call 136

17.4 Breakpoints 137

 Setting and Removing Breakpoints 137
 The Stop Statement 137
 Breaking Conditionally 137

17.5 The Immediate Window 138

 Executing Instructions in the Immediate
Window

138

 Asking Questions in the Immediate
Window

138

 Printing to the Immediate Window 138

17.6 The Locals Window 139

 Observing Variables 139

17.7 The Watch Window 140

 Adding an Expression to Watch 140
 Types of Watch 140
 Adding a Quick Watch 141
 Editing and Removing Watches 141

17.8 The Call Stack 142

 Displaying the Call Stack 142
 Using the Call Stack 142

18 HANDLING ERRORS Page

18.1 Run-Time Errors in VBA 143

18.2 Error Handling in VBA 144

 Identifying Potential Run-Time Errors 144
 The On Error Statement 144

18.3 Using the On Error Statement 145

 Ignoring Run-Time Errors 145
 Disabling an Error Handler 145

18.4 Creating a Custom Error Handler 146

 Redirecting Your Code 146
 Writing the Error-Handling Section 146
 Exiting a Procedure before the Error-

Handling Code
147

 The Complete Example 147

18.5 Resuming After an Error 148

 Resuming at the Original Line 148
 Resuming at the Next Line 148
 Resuming at a Specified Line 149
 Why use Resume and Not GoTo? 149

18.6 The Err Object 150

 Getting the Error Number and
Description

150

 A Catch-All Approach to Error-Handling 150

TABLE OF CONTENTS (7 of 13)

© Copyright 2024 Page 8

19 EVENTS Page

19.1 Event Handlers 151

 Objects Which Have Events 151
 Event Procedures vs. Normal Procedures 151

19.2 Creating a Simple Event Handler 152

 Accessing the Object’s Code 152
 Choosing the Event 152
 Writing the Code 153
 Triggering the Event 153

19.3 Workbook Events 154

 The Before Close Event 154
 The Before Save Event 155
 The Before Print Event 155
 The New Sheet Event 156
 New Chart 156

19.4 Worksheet Events 157

 The Selection Change Event 157
 The Change Event 158
 Checking if the Target is Within a

Specific Range
158

19.5 ActiveX Controls 159

 Drawing ActiveX Controls 159
 Changing Properties of the Control 159
 Adding Code to the Control’s Events 160
 Prevent Controls from Taking the Focus 160

20 CREATING USER FORMS Page

20.1 User Forms 161

 Creating a Working Form 161
 Our Example 161

20.2 Creating a User Form 162

 Inserting a User Form into a Project 162
 Switching Between Form Views 163
 Removing Forms 163

20.3 Form Properties 164

 Changing the Properties of a Form 164
 Some Common Form Properties 164
 Choosing Colours 165
 Setting Font Properties 165

20.4 Form Controls 166

 The Toolbox 166
 Drawing a Control on a Form 166

20.5 Manipulating Controls 167

 Selecting a Control 167
 Selecting Multiple Controls 167
 Resizing Controls 168
 Moving Controls 168
 Deleting Controls 168
 Copying and Pasting Controls 168

20.6 Laying Out Controls 169

 The Form Grid 169
 The UserForm Toolbar 169

20.7 Grouping Controls 170

 Grouping a Set of Controls 170
 Using Frames to Group Controls 170

20.8 Control Properties 171

 Naming Controls 171
 Naming Conventions for Controls 171
 Size and Position Properties 172
 Formatting Properties 172

21 RUNNING USER FORMS Page

21.1 Running a Form 173

 Choosing to Run a Form 173
 Closing a Running Form 173

21.2 Navigating a Form 174

 Tab Order 174
 Accelerator Keys 175
 Keyboard Shortcuts 175
 The Default and Cancel Buttons 176

TABLE OF CONTENTS (8 of 13)

© Copyright 2024 Page 9

22 ADDING CODE TO FORMS Page

22.1 Making Forms Work 177

 Our Example 177

22.2 Running User Forms 178

 Running a Form as a Developer 178
 Running a Form as a User 178

22.3 Adding Code to a Form 179

 Viewing a Form’s Code 179

22.4 Referring to Forms and Controls 180

 Referring to a Form 180
 The UserForms Collection 180
 Looping Over the UserForms Collection 181
 Referring to Controls on a Form 181
 Looping Over the Controls Collection 181

22.5 Form and Control Events 182

 Initialising a Form 182
 Clicking the Cancel Button 182
 Clicking the Add to List Button 183
 Writing Modular Code in Forms 183

22.6 Validating User Inputs 184

 The Data Events of a Text Box 184
 Deciding on Your Validation Rules 184
 Creating Basic Validation Code 185
 Selecting the Text in a Text Box 185
 Ideas for Less-Intrusive Validation 186
 Resetting the Formatting Properties 186
 Using Hidden Labels 186
 Validation at the Form Level 187
 Setting the Focus to a Control 187
 Looping over Controls 188
 Validating Every Text Box in One Pass 188

23 ADVANCED FORM CONTROLS Page

23.1 Beyond the Basics 189

 The Advanced Controls Available 189

23.2 Frames 190

 Drawing Frames and Controls 190
 Looping Through Controls in a Frame 190

23.3 Combo Box and List Box Controls 191

 Setting the Row Source 191
 The List Property 192
 Adding Items Individually 192
 Removing and Clearing Items 193
 Referring to the Selected Item 193
 Changing the List Style 194
 Restricting Choices in a Combo Box 194
 Allowing Multiple Selections in a List Box 194
 Referring to Multiple Selected Items 195
 Working with Multiple Columns 195

23.4 Option Buttons 196

 Grouping Option Buttons 196
 Framing Option Buttons 196
 Setting a Default Option for a Group 197
 Using the Value of an Option Button 197
 The Click Event 197

23.5 Check Boxes and Toggle Buttons 198

 Check Box and Toggle Button Values 198
 The Click Event 198

23.6 Spin Buttons and Scroll Bars 199

 Drawing Spin Buttons and Scroll Bars 199
 Scrolling Properties 199
 The Value Property 199
 The Change Event 200
 The SpinUp and SpinDown Events 200

23.7 MultiPage Controls 201

 Selecting Parts of a MultiPage Control 201
 Working with Pages 201
 The Index and Value Properties 202
 Looping Through Pages and Controls 202

TABLE OF CONTENTS (9 of 13)

© Copyright 2024 Page 10

24 CONTROLLING OTHER
APPLICATIONS

Page

24.1 Referencing Object Libraries 203

 Setting a Reference to an Object Library 203
 The Default References 204
 References and the Object Browser 204
 Microsoft Office Version Numbers 204

24.2 An Example for Word 205

 Setting a Reference to the Word Object
Library

205

 Declaring a Variable for Word 205
 Creating a New Instance of Word 206
 Auto-Instancing Variables 206
 Showing and Activating Word 207
 Creating a New Document 207
 Writing and Formatting Text in Word 208
 Copying from Excel to Word 208
 Saving the Document and Closing Word 209
 The Complete Example 209

24.3 An Example for PowerPoint 210

 Setting a Reference to the PowerPoint
Object Library

210

 Opening PowerPoint and Creating a
Presentation

210

 Creating a Title Slide 210
 Copying from Excel to PowerPoint 211
 Moving and Resizing PowerPoint Objects 211
 Saving the Presentation and Closing

PowerPoint
212

 The Complete Example 212

24.4 An Example for Outlook 213

 Setting a Reference to the Outlook
Object Library

213

 The Complete Example 213

24.5 Controlling Applications without
References

214

 The CreateObject Function 214
 Using Object Variables 214
 Converting Constants to Numbers 215
 Getting a Reference to a Running

Application
216

 Testing the Version of an Application 217

24.6 Referencing Other VBA Projects 218

 Setting a Reference to a VBA Project 218
 Creating Excel Add-Ins 219
 Loading Excel Add-Ins 219

25 CONNECTING TO DATABASES Page

25.1 ActiveX Data Objects 220

 A Brief Version History 220
 Referencing the ADO Library 220

25.2 Connecting to an External Database 221

 Setting the Connection String 221

25.3 Creating Connections in Access 222

 Referencing the CurrentProject’s
Connection

222

25.4 ADO Recordsets 223

 Creating a Recordset 223
 Setting the Source of the Recordset 223
 Setting the Lock Type 224
 Setting the Cursor Type 224
 Opening and Closing a Recordset 225
 Copying Data into Excel 225

25.5 Moving in a Recordset 226

 Moving the Cursor 226
 Reaching the End of a Recordset 226
 Looping Over a Recordset 227
 Referring to Fields 227

25.6 Finding and Filtering Records 228

 The Find Method 228
 Repeated Finds 228
 Applying a Filter 229
 Removing a Filter 229
 Adding Criteria to a SQL Select

Statement
230

 Creating Dynamic SQL Statements 230

25.7 Modifying Data 231

 Adding New Records 231
 Editing Existing Records 231
 Deleting Records 231

25.8 ADO Commands 232

 Creating a New Command Object 232
 Setting the Command Text 232
 Executing the Command 232

25.9 Using DAO 233

 Referencing the Correct Object Library 233
 Opening a Database 233
 Creating a Recordset 233

TABLE OF CONTENTS (10 of 13)

© Copyright 2024 Page 11

26 FILES AND FOLDERS Page

26.1 Working with Files and Folders 234

 The Scripting Runtime Library 234
 Creating a FileSystemObject 234

26.2 Basic File and Folder Techniques 235

 Testing if a File or Folder Exists 235
 Creating a Folder 235
 Copying and Moving Files and Folders 235
 Deleting Files and Folders 236
 Renaming Files and Folders 236
 Getting a Reference to a File or Folder 236

26.3 Looping Over Files and Folders 237

 Looping Over Files 237
 Looping Over Folders 237
 Recursively Looping Over Subfolders 238

26.4 Working with Text Files 239

 Creating and Writing to a Text File 239
 Opening a Text File 239
 Reading from a Text File 240

26.5 Using VBA’s FileSystem Methods 241

 Creating Folders 241
 Deleting Files and Folders 241
 Copying Files 241
 Renaming Files 241

27 FILE DIALOG BOXES Page

27.1 Working with File Dialogs 242

 Types of File Dialog Box 242
 Displaying a File Dialog Box 243
 Performing the Default Action 243

27.2 Customising File Dialogs 244

 Changing the Title and Button Name 244
 Setting the Initial Location 244
 Allowing Multiple Selections 245
 Creating File Filters 245

27.3 Picking Files and Folders 246

 Returning a File or Folder Path 246
 Testing Which Button was Clicked 246
 Dealing with Multiple Selections 247
 Using Multiple File Dialogs 247

28 CLASS MODULES Page

28.1 What are Class Modules? 248

 Why Create Classes? 248
 Important Terminology 249
 Debugging in Class Modules 249

28.2 Designing a Class 250

 Our Example Film Class 250

28.3 Creating a Class 251

 Inserting a Class Module 251
 Renaming a Class Module 251
 Creating a New Instance of a Class 251

28.4 Creating Basic Properties 252

 Basic Properties 252
 Disadvantages of Basic Properties 252

28.5 Creating Full Properties 253

 Assigning a Value to a Property 253
 Reading a Value from a Property 254
 Assigning an Object to a Property 254
 Writing Additional Code in Properties 255
 Read-Only Properties 255

28.6 Creating Methods 256

 Writing Methods in a Class Module 256
 Using Class Methods 256

28.7 Class Module Events 257

 Creating Class Module Event Handlers 257
 Triggering Class Events 257

28.8 Sharing Class Modules 258

 Step 1 – Rename the VBA Project 258
 Step 2 – Make the Class Public 258
 Step 3 – Create a Function to Return an

Instance of the Class
258

 Step 4 – Reference the Class Project 259
 Step 5 – Consume the Class 259

TABLE OF CONTENTS (11 of 13)

© Copyright 2024 Page 12

29 COLLECTIONS AND DICTIONARIES Page

29.1 What are Collections? 260

 Custom Collections and Dictionaries 260

29.2 Untyped Collections 261

 Creating a New Collection 261
 Adding Items to a Collection 261
 Adding Custom Classes to a Collection 262
 Referencing Collection Items 262
 Removing Items from a Collection 262
 Looping Over Collections 263

29.3 Typed Collections 264

 The Problem with Untyped Collections 264
 Creating a Collection Class 264
 Populating a Typed Collection 265
 Looping Over a Typed Collection 265
 Referencing Items in a Typed Collection 265

29.4 Dictionaries 266

 Referencing the Scripting Runtime
Library

266

 Creating a New Dictionary 266
 Adding Items to a Dictionary 267
 Referring to Dictionary Items 267
 Automatically Creating Keys 268
 Checking if a Key Exists 268
 The Compare Mode 269
 Removing Items from a Dictionary 269
 Replacing Dictionary Values 270
 Replacing Dictionary Objects 270
 Looping Over Dictionaries 271

30 ARRAYS Page

30.1 Overview of Arrays 272

 Viewing the Contents of Arrays 272

30.2 Declaring Arrays 273

 Setting the Dimensions of an Array 273
 Changing the Base of Arrays 273
 Declaring Multi-Dimensional Arrays 273

30.3 Populating Arrays 274

 Assigning Values to an Array 274
 Assigning Objects to Arrays 274

30.4 Reading from Arrays 275

 Referring to a Specific Element 275
 Looping Over an Array 275
 The Bounds of an Array 276
 Using For Each Loops 276

30.5 Dynamic Arrays 277

 Declaring an Empty Array 277
 Re-Dimensioning an Array 277
 Preserving the Contents of an Array 277

30.6 Arrays in Excel 278

 Assigning a Range to an Array 278
 Calculating in an Array 278
 Assigning an Array to a Range 278

TABLE OF CONTENTS (12 of 13)

© Copyright 2024 Page 13

31 MODULAR CODE, PARAMETERS
AND FUNCTIONS

Page

31.1 Modular Code 279

 Our Example 279

31.2 Breaking a Procedure into Parts 280

 Creating Module Level Variables 280
 Getting Input from the User 280
 Retrieving the Related Values 281
 Building and Showing a Message 281
 Putting it all Together 281

31.3 Procedures and Parameters 282

 Our Example 282
 Defining Parameters 282
 Calling a Procedure which has

Parameters
283

 Optional Parameters 283
 Assigning Default Values to Parameters 284
 Testing for Missing Arguments 284
 ParamArrays 284

31.4 Passing Arguments ByRef and ByVal 285

 Passing Arguments by Reference 285
 Passing Arguments by Value 286
 Passing Arguments in Parentheses 286

31.5 Functions vs. Subroutines 287

 Returning a Value from a Function 287
 Returning a Reference from a Function 287
 Calling a Function 288
 Using Functions in a Worksheet 288
 Defining Function Parameters 288

31.6 Debugging Modular Code 289

 Viewing the Definition of a Procedure 289
 Stepping Over a Procedure Call 289

32 CONSTANTS AND ENUMERATIONS Page

32.1 Working with Constants 290

 Declaring Constants 290
 Referencing Constants 290

32.2 Enumerations 291

 Declaring Enumerations 291
 Referencing Enumerations 291
 Using Enumerations as Data Types 292
 Converting an Enumeration to Text 292
 Enumerations for Colours 293

33 SHAPES Page

33.1 Introduction to Shapes 294

 The Shapes Collection 294

33.2 Referring to Shapes 295

 Names and Index Numbers 295
 Referring to a Range of Shapes 295
 Referring to Selected Shapes 295
 Referring to Newly Added Shapes 296
 Looping Over the Shapes Collection 296

33.3 Shape Size and Position 297

 Changing the Size and Position 297
 Sizing and Positioning Relative to Other

Objects
297

33.4 Adding Shapes 298

 Adding a Basic AutoShape 298
 Labels and Textboxes 298
 WordArt 299
 Pictures 299
 Form Controls 300

33.5 Formatting Shapes 301

 Changing Shape Colours 301
 Colour Gradients 302
 Other Formatting Options 303
 Setting Default Shape Formats 304
 Copying Formats between Shapes 304
 Using Shape Styles 304

33.6 Shape Adjustments 305

 Referring to Adjustments 305
 Adjusting Adjustments 305

33.7 Adding Text to AutoShapes 306

 The TextFrame and TextFrame2 Objects 306
 Adding Text to a Shape 306

33.8 Formatting Text in a Shape 307

 Basic Font Formatting 307
 Changing the Colour of Text 307
 Formatting Part of the Text 308
 Aligning Text in a Shape 308
 Changing Text Orientation 308

33.9 Connectors and Lines 309

 Drawing Straight Lines 309
 Adding Multi-Point Lines and Curves 309
 Drawing Freeform Lines 310
 Creating Enclosed Shapes 310
 Connectors 311

TABLE OF CONTENTS (13 of 13)

© Copyright 2024 Page 14

34 VBA AND AI TOOLS Page

34.1 Choosing an AI Tool 312

34.2 Getting Simple Code 313

 Our Example 313
 Getting the Prompt Right 313
 The Generated Code 314

34.3 Uploading Workbooks 315

34.4 A More Advanced Example 316

 Our Example 316
 Writing the Prompt 316
 Improving the Solution 317

34.5 Optimising and Improving Code 318

 Our Example 318
 What we Expect our AI Tool to Find 318
 Asking ChatGPT to Improve Code 319
 The Changes Made 319

34.6 Debugging 320

34.7 Global Changes and Reformatting 321

 Example: Rewriting a Macro 321
 Making Global Changes 322

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 15

CHAPTER 1 - THE VISUAL BASIC EDITOR

1.1 The Visual Basic Editor

To write any Visual Basic for Applications (VBA) code you’ll need to use the Visual Basic Editor
(VBE). This chapter explains how to set up the VBE to make writing code as simple as possible.

Displaying the Developer Ribbon Tab

Although you can use the VBE without it, the Developer ribbon tab contains some useful tools for
working with your VBA code. To display the Developer tab:

Opening the VB Editor

Ribbon KeyboardYou can open the VBE using one
of these options:

Developer | Visual Basic +

When you want to switch back to Microsoft Excel, you can do so by pressing + again.
Alternatively, you can use one of the methods shown below:

Alt F11

Alt F11

All of the Microsoft Office applications share the same VBE. This means that if you
change any settings in one application those changes will be inherited by the other
applications.

Wise
Owl’s
Hint

a) Right-click any existing ribbon tab
and choose this option.

b) On the dialog box which appears,
check this box and click .

c) Click here to select
the Developer tab
and see the extra
tools to which you
now have access.

You can use the Windows task
bar to select the Excel workbook
that you want to see. You can
also just click this button on the
VBE toolbar.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 16

1.2 The VBE Screen

When you first open the VBE you should find that the default layout of the screen resembles the
diagram shown below:

Opening and Closing Windows

You can close any window in the VBE to remove it from the screen.

You can use the View menu to display any window that you’ve closed down, and also to view the
other available windows.

Like any old-fashioned Office
application, you’ll find a menu
and toolbar at the top of the
screen.

The VBE contains a variety of
windows that you can display.
One of the default windows is
the Project Explorer, in which
you’ll see a list of all the open
Excel VBA projects.

The other window that should
be visible by default is called
the Properties window. This
displays the properties of any
object that you have selected.

The main part of the screen
will be empty. Eventually, this
is where you’ll be writing all of
your code.

Simply click the cross in the
top right hand corner of any
window to close it down.

Click the View menu to see
the list of windows that you
can display.

Click the name of a window
to make it appear.

Some windows can also be
displayed with a keyboard
shortcut.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 17

Repositioning Windows

You don’t have to accept the default position of the VBE windows. To move a window around you
can simply click and drag in the title bar of the window.

Docking Windows

Returning a window to its original position can be incredibly fiddly. The basic process involves
dragging a window towards one of the edges of the screen in order to dock it.

You can check whether an individual window is dockable
by right-clicking somewhere inside it.

a) Start by clicking and
dragging the title bar
of the window that
you want to move.

b) Drag the window until
the border turns thick
and then release the
mouse button.

c) The window should
now be repositioned.

a) Click and drag the title bar of
the window towards the edge
of the screen.

b) When the border of the window
changes from thick to thin you
can release the mouse button
to dock the window.

a) Right-click somewhere inside the
window to display a context menu.

b) Ensure that there is a check next
to the Dockable option. You can
click the Dockable option to add a
check if there isn’t one already.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 18

1.3 The Main VBE Windows

You’ll find that some of the VBE windows become more useful as you gain experience. There are
also some windows which you’ll need to learn to use early on in your VBA career.

The Project Explorer

The Project Explorer window displays a list of all of your open VBA projects, as well as any items
contained within these projects.

The Properties Window

The Properties window shows the attributes of any object that you have selected.

You can also display the Properties window within Excel using a tool on the
Developer ribbon tab. Take care though: if you close the window in Excel it will
also be closed in the VB Editor.

Wise
Owl’s
Hint

Each Excel workbook has its own VBA project which is displayed in the Project
Explorer. In this example we have two workbooks and their corresponding VBA
projects open.

A VBA project can contain several different
types of item. You’ll learn about most of them
in the rest of this manual.

Click the yellow folder to change how items
are displayed: either organised into different
folders, or displayed in a single list.

You can collapse and expand the items in a
project or a folder by clicking the + and –
symbols.

You can use this drop down list at the top of
the Properties window to select a different
object.

You can display the list of properties either
alphabetically or categorised by clicking the
tabs at the top of the Properties window.

Click this tool on the Developer tab to
show the Properties window in Excel.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 19

1.4 VBE Settings

The VBE has numerous settings that you can alter to suit your preferences when writing code.

The Options Dialog Box

To display the Options dialog box, from the menu select: Tools | Options…

Changing Font Formatting Options

The Editor Format tab of the Options dialog box has settings that allow you to change the
appearance of your code.

The default tab you’ll see is the Editor tab.
The options here control the behaviour of the
VBE as you’re writing code.

The options shown in this diagram represent
the default settings you’ll see when you first
install Excel.

Having these three boxes checked ensures
that you’ll see as much help as possible as
you write your code.

Click this button to open a webpage which
describes what each of the options on this
tab of the dialog box does.

The VBE displays different items in your
code using different formats. This list shows
you the different types of text that you’ll see
when you’re writing code.

Clicking an item in the list reveals the default
formatting for that type of code. Here we’ve
selected Syntax Error Text which appears in
a bright red font in the VBE.

If you don’t like the default formatting for any
type of code you can change it by selecting
different colours, fonts and sizes for the text.

This box shows what the selected text type
will look like with your current options. Feel
free to click if it looks horrible!

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 20

CHAPTER 2 - WRITING SIMPLE VBA CODE

This chapter introduces you to the basics of writing VBA code. You won’t create a world-changing
application here, but you will learn the fundamental techniques you’ll need to start writing one.

2.1 Modules

Before you can start writing code you’ll need somewhere to put it. You can write VBA code in a
variety of places in a project but the most common location is in a module.

Inserting a Module

You can insert a module into a project by selecting Insert | Module from the menu. You can also
do this using the Project Explorer, as shown in the diagram below:

Your new module will appear in the Modules folder of your project and will automatically open in
the main window of the VBE.

a) Right-click in the Project Explorer somewhere
within the project in which you want to insert
your new module.

b) From the context menu which appears, select
Insert | Module

You’ll see your new module listed in
the Modules folder of the project.

The module will also be displayed in
the main area of the VBE.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 21

Opening and Closing Modules

When you insert a module it automatically opens. You can close and reopen modules easily, as
shown below:

Renaming Modules

To rename a module you change its Name property in the Properties window.

Naming Rules in VBA

The rules for module names apply to the names of everything to which you can assign a name in
VBA. These rules are summarised in the table below:

Rules for naming things in VBA

The first character must be a letter.

The name cannot contain a space, or any of the following characters . ! @ $ & #

The maximum length of a name is 255 characters.

You can’t have duplicates of a name in the same scope. So, for example, you can’t have two modules in the
same project with the same name, but you can have modules in separate projects with the same name.

It’s best to avoid using the names of existing VBA things. For example, don’t call a module something like
Workbook or Worksheet.

You can click the cross in the top
right corner of a module to close
it.

Double-click the module in the
Project Explorer to open it again.

Select the module in the Project Explorer
and then click into the Name property in
the Properties window.

Type in a new name for the module and
then press . The module’s new name
will appear in the Project Explorer.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 22

Naming Conventions

As well as the rules that you must follow for naming things in VBA, there are some conventions
that you could choose to adopt in order to make your names consistent.

Convention Description Example

Capital Letters Use a capital letter at the start of each word in the name. This is
called Pascal Case or, sometimes, Camel Case.

MyFirstModule

Underscores Use an underscore instead of a space to separate words. My_First_Module

Removing Modules

You can delete a module from a project by choosing to remove it.

Exporting Modules

You can export a module to a file which can be moved around independently of a VBA project.

Right-click on a module and choose to Remove it. Click
No on the message that appears, unless you do want to
export the module first.

a) Right-click on the
module and choose
the Export File…
option.

b) Choose a location in
which to save your
exported module and
click the Save button.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 23

Importing Modules

You can’t run or edit the code in an exported module. First, you must import it into a VBA project.

Copying Modules to Other Projects

If you have more than one project open at the same time it’s easy to copy modules between them.

If the destination project already contains a module with the same name, the one
that you’re copying will be renamed automatically to avoid a conflict.

Wise
Owl’s
Hint

a) Right click the mouse in the
Project Explorer and click
Import File…

b) Double-click on the module
you want to import to add it
to the VBA project.

a) Click and drag the module
from its original project into
any other project listed in
the Project Explorer.

b) Release the mouse button
to drop the module into its
new project. A copy of the
module will be created for
you automatically.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 24

2.2 Writing Procedures

Procedure is a generic term used to describe a variety of different programs that you can write in
VBA. This section explains how to start writing the simplest type of procedure; a subroutine.

Types of VBA Procedure

There are three types of procedure you can write in VBA: subroutines; functions; and properties.
The table below summarises what each one is, and shows a fairly useless example of each.

Procedure Description Example

Subroutine This is the simplest type of procedure you can
write. A subroutine contains a list of
instructions for the program to carry out in a
specific order. Subroutines are commonly
referred to as subs or macros.

Function A function is similar to a subroutine in that it
contains a list of instructions to be executed
in a particular order. The main thing which
distinguishes this type of procedure is that it
can also return some kind of value or
reference.

Property Properties are written primarily inside class
modules. In basic terms, a property is an
attribute of an object. There are three
different forms of the property statement: Let,
Get and Set.

Inserting Procedures

The easiest way to begin a procedure is simply to start typing in your module. If you’d like a little
help you can also insert a procedure from the menu by choosing Insert | Procedure…

a) Give the procedure a name. Compound names like this one
are ideal, as they describe what the procedure does and are
unlikely to be confused with existing Excel VBA keywords.

b) Choose which type of procedure you want to create. In this
chapter we’re sticking with subroutines.

c) Choose the scope of your procedure. Public procedures can
be called from any module in the project, while private ones
can only be called in the module in which they are written.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 25

Starting a Subroutine

Although inserting a procedure can help to remind you of the syntax, most of the time you’ll find it
easier just to type directly into your module. The diagram below shows you how to get started.

If, on the other hand, you’ve done something wrong, the VB Editor should make it immediately
apparent by displaying an error message.

When you’ve successfully created the procedure you can start writing out the instructions to make
it do something!

a) Start by typing the word sub followed by a space and the name that you
want to give your procedure.

b) Once you’ve typed in a name for the sub, simply press on the
keyboard.

c) Several things should then happen:
• The letter s in the word sub will be capitalised.
• The word Sub turns blue.
• Parentheses appear at the end of the procedure’s name.
• The words End Sub appear.

Here we’re trying to create a
sub with a space in its name.

The VB Editor makes it obvious that you’ve done something wrong
by highlighting the text in red and, by default, displaying an error
message.

The error message is often difficult to interpret, but in this case we
know exactly what we’ve done wrong. Click on the message
so that you can remove the space and fix the problem.

To make your procedure actually do
something you just need to write the
instructions in between the Sub and
End Sub lines.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 26

Switching off Syntax Error Messages

When you make a mistake it can be annoying to have to click on the (often useless) error
message before you can fix the problem. Fortunately, you can turn these messages off.

Now when you make a syntax error the line of code will be highlighted in red, but you’ll no longer
have to clear the error message before you go about fixing the problem.

Setting the Scope of a Procedure

The scope of a procedure determines its availability to other modules in your project. Unless you
specify otherwise, all procedures that you create are public.

OK

You can write the word Public at the start of a procedure to
explicitly show that it is public, but as this is the default you
can happily omit this word.

Public procedures are available to all of the modules in a
project. If you want to restrict the scope of a procedure to a
single module, use the word Private instead.

From the menu choose Tools |
Options… and on the Editor
tab of the dialog box, uncheck
this box.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 27

2.3 Writing Neat Code

Taking the time to write neat code can be a difficult habit to get into, but you’ll thank yourself for
doing it later on! Neatly-written code is quicker and easier to read and debug.

Commenting Your Code

Comments are a useful way to help other people (or future you) interpret the code you’ve written.
You can begin a comment by typing an apostrophe followed by your comment text.

Old-school (or just old) programmers may be interested to learn that you can also add comments
using the Rem statement.

You can write comments on separate lines
like this one.

You can also write comments at the end of
a line of code.

These two procedures perform exactly the same
task at exactly the same speed. The one on the
left takes slightly longer to write due to the added
comments and careful indenting of lines, but if you
had to solve an issue with the code the one below
is much more difficult to work with.

Rem is short for remark and behaves just like
the apostrophe except that you can’t use it to
add comments at the end of a line of code.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 28

Commenting Out Multiple Lines of Code

Sometimes you’ll want to temporarily remove some lines of code from your procedures. Rather
than deleting them entirely you can simply turn them into comments.

Using Blank Lines and Indenting

As you saw in the screenshot at the start of this section, you can write your procedures in one
continuous wall of text. It’s much better to spend time laying out your code neatly however.

Within a procedure you should use blank lines at your discretion to make the code as easy to read
as possible. The conventions for indenting code depend on which statements you’re writing.

a) Start by selecting at least
part of each line that you
want to comment out.

b) Click this button which you can
find on the Edit toolbar. If you
can’t see this toolbar, from the
menu select View | Toolbars |
Edit

c) All of the selected lines will be
turned into comments.

d) To uncomment the
lines, select them
and click this tool
on the toolbar.

After typing the name of a new procedure press twice to create a
blank line between the procedure name and the start of the code.

Press the key to indent the code within the procedure by one level.

Some VBA statements have a corresponding
end statement, for example Sub always has a
matching End Sub.

All of the code written between the beginning
and end of a statement such as Sub and End
Sub should be indented one level.

You should continue to indent code each time
you begin another statement with a beginning
and end, such as If and End If.

The line at the end of a statement should be
written at the same indent level as the start of
the statement. You can press or

+ to outdent code.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 29

Indenting Multiple Lines

You can indent multiple lines of code at the same time

Changing Indenting Settings

The default width of a tab space in the VB Editor is equivalent to four spaces. You can change this
setting by choosing Tools | Options… from the menu.

The Continuation Character

As you begin writing longer, more complex instructions you’ll often find that your screen isn’t wide
enough to display the code without scrolling left and right.

You can break one line of code into multiple separate lines using the continuation character. Each
time you want to split an instruction onto a new line, type in a space followed by an underscore.

On the Editor tab of the dialog box you can
type a number into this box to change the
width of a tab space in the VB Editor.

When your code extends past the width of a single screen you can use the scroll bar to move left and right to see it all.

To begin a new line in the middle of a single
instruction you must type in a space followed
by an underscore before pressing .

You can’t have blank lines between the lines
which make up the complete instruction.

Select at least a part of each line
that you want to indent and then
press to indent them. You
can outdent the selected lines by
pressing and .

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 30

2.4 Writing Simple VBA Instructions

This section is designed as a brief introduction to how the VBA language works to help you get
started. We’ll discuss these basic ideas in much more detail in a later chapter.

Objects

VBA is based around the concept of objects. Some of the main objects you’ll encounter are ones
that you’ll be familiar with from working with Excel, such as workbooks, worksheets and cells.

Methods and Properties

In order to manipulate an object you can either apply one of its methods, or modify one of its
properties.

It may seem complicated at first but the rules of grammar in VBA are relatively
simple and, more importantly, consistent. Give it some time and you’ll soon be
speaking VBA like a pro!

Wise
Owl’s
Hint

Basic VBA sentence structure follows a Thing.Action pattern, where the Thing is
the object that you want to manipulate and the Action is what you want to do to it.
The Thing is always separated from the Action using a full stop.

Wise
Owl’s
Hint

Generally speaking, whenever you want to perform an action in
VBA, you begin the instruction by referring to an object.

After referencing the object you enter a full stop and then use
another VBA keyword to do something to the object. The code
shown in this example activates a workbook, then selects a
worksheet, and finally changes the value of a range object.

The name of a method is usually a verb and represents some
kind of action that will be performed on an object. Different
objects have different methods that can be applied to them.
Activate and Select are both examples of methods.

Properties are attributes of objects whose value you can often
change. To assign a value to a property you make it equal to
something. Here we’re assigning the word Something to the
Value property of a Range object.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 31

2.5 Tools to Help with Writing Code

There are several features built in to the VBE that are designed to provide you with help as you
write your code.

Choosing Which Tools are Enabled

To choose which tools are enabled, from the menu select Tools | Options…

Using IntelliSense to Write Code Faster

IntelliSense is a useful feature which attempts to present you with a list of valid options as you
write your code. This happens automatically if you’ve checked the Auto List Members option.

You can also attempt to force the IntelliSense list to appear using a keyboard shortcut. Pressing
 + or + will achieve this.Ctrl J Ctrl Spacebar

Beware that not all objects display an IntelliSense list when you type in a full stop
immediately after referencing them. A notable example of this is the worksheet
object.

Wise
Owl’s
Hint

On the Editor tab of the dialog
box, checking these three
boxes ensures that you’ll
receive the maximum amount
of help as you write your code.
If any of these features annoys
you, simply uncheck the box to
disable them.

Checking Auto List Members ensures that the
IntelliSense list will appear automatically.

Auto Quick Info determines whether tooltips
will appear to help you.

Auto Data Tips means you see tooltips when
hovering the mouse over certain bits of code.

After referencing an object you can type
a full stop to make the IntelliSense list
appear.

The IntelliSense list displays all of the
methods and properties for the class of
object that you’ve referenced.

You can highlight an item in the list either by scrolling
through it using the cursor keys or by starting to type the
name of the method or property that you want to use.

To type in the highlighted word you can either press
 to remain on the same line, or to move to

the next line.

You can even make the
IntelliSense list appear at the
start of a blank line using one
of the two keyboard shortcuts
listed above.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 32

Using Tooltips

Tooltips provide you with information on the parameters of VBA keywords. These tooltips will
appear automatically as long as you have the Auto Quick Info option checked.

If a tooltip disappears and you want to redisplay it, press + (that’s a capital i rather than a
lower case L) on the keyboard.

Viewing Data Tips

Data tips only appear while you’re stepping through your code – a technique that you’ll learn about
in a later chapter. To see a data tip simply hover the mouse cursor over a keyword.

Ctrl I

Tooltips will appear after you type in a keyword followed either
by an open parenthesis or a space.

The tooltip shows the parameter list for the particular
keyword you have typed in. You can see the currently
active parameter highlighted in bold text.

Optional parameters are displayed
enclosed in a set of square brackets,
while compulsory parameters aren’t.

The yellow arrow indicates that you’re stepping
through a procedure – more on this later.

Hover the mouse cursor over a keyword to see
a data tip appear with more information.

With the text cursor positioned on the same line, press + to display
the tooltip for the command you’re writing.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

What we do!

Basic

training
Advanced
training

Systems /
consultancy

O
ff

ic
e

 Microsoft Excel

 VBA macros

 Office Scripts

 Microsoft Access

P
o
w

er
 B

I,
 e

tc
 Power BI and DAX

 Power Apps

 Power Automate (both)

S
Q

L
 S

e
r
v
e
r

 SQL

 Reporting Services

 Report Builder

 Integration Services

 Analysis Services

C
o

d
in

g
 a

n
d

 A
I
 Visual C#

 VB programming

 AI tools

 Python

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

