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CHAPTER 1 - THE VISUAL BASIC EDITOR

1.1 The Visual Basic Editor

To write any Visual Basic for Applications (VBA) code you’ll need to use the Visual Basic Editor 
(VBE).  This chapter explains how to set up the VBE to make writing code as simple as possible.

Displaying the Developer Ribbon Tab

Although you can use the VBE without it, the Developer ribbon tab contains some useful tools for 
working with your VBA code.  To display the Developer tab:

Opening the VB Editor

Ribbon KeyboardYou can open the VBE using one 
of these options:

Developer  |  Visual Basic  + 

When you want to switch back to Microsoft Excel, you can do so by pressing  +   again. 
Alternatively, you can use one of the methods shown below:

Alt F11

Alt F11

All of the Microsoft Office applications share the same VBE.  This means that if you 
change any settings in one application those changes will be inherited by the other 
applications.

Wise 
Owl’s 
Hint

a) Right-click any existing ribbon tab 
and choose this option.

b) On the dialog box which appears, 
check this box and click .

c) Click here to select 
the Developer tab 
and see the extra 
tools to which you 
now have access.

You can use the Windows task 
bar to select the Excel workbook 
that you want to see.  You can 
also just click this button on the 
VBE toolbar.
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1.2 The VBE Screen

When you first open the VBE you should find that the default layout of the screen resembles the 
diagram shown below:

Opening and Closing Windows

You can close any window in the VBE to remove it from the screen.

You can use the View menu to display any window that you’ve closed down, and also to view the 
other available windows.

Like any old-fashioned Office 
application, you’ll find a menu 
and toolbar at the top of the 
screen.

The VBE contains a variety of 
windows that you can display.  
One of the default windows is 
the Project Explorer, in which 
you’ll see a list of all the open 
Excel VBA projects.

The other window that should 
be visible by default is called 
the Properties window.  This 
displays the properties of any 
object that you have selected.

The main part of the screen 
will be empty.  Eventually, this 
is where you’ll be writing all of 
your code.

Simply click the cross in the 
top right hand corner of any 
window to close it down.

Click the View menu to see 
the list of windows that you 
can display.

Click the name of a window 
to make it appear.

Some windows can also be 
displayed with a keyboard 
shortcut.
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Repositioning Windows

You don’t have to accept the default position of the VBE windows.  To move a window around you 
can simply click and drag in the title bar of the window.

Docking Windows

Returning a window to its original position can be incredibly fiddly.  The basic process involves 
dragging a window towards one of the edges of the screen in order to dock it.

You can check whether an individual window is dockable 
by right-clicking somewhere inside it.

a) Start by clicking and 
dragging the title bar 
of the window that 
you want to move.

b) Drag the window until 
the border turns thick 
and then release the 
mouse button.

c) The window should 
now be repositioned.

a) Click and drag the title bar of 
the window towards the edge 
of the screen.

b) When the border of the window 
changes from thick to thin you 
can release the mouse button 
to dock the window.

a) Right-click somewhere inside the 
window to display a context menu.

b) Ensure that there is a check next 
to the Dockable option.  You can 
click the Dockable option to add a 
check if there isn’t one already.
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1.3 The Main VBE Windows

You’ll find that some of the VBE windows become more useful as you gain experience.  There are 
also some windows which you’ll need to learn to use early on in your VBA career.

The Project Explorer

The Project Explorer window displays a list of all of your open VBA projects, as well as any items 
contained within these projects.

The Properties Window

The Properties window shows the attributes of any object that you have selected.

You can also display the Properties window within Excel using a tool on the 
Developer ribbon tab.  Take care though: if you close the window in Excel it will 
also be closed in the VB Editor.

Wise 
Owl’s 
Hint

Each Excel workbook has its own VBA project which is displayed in the Project 
Explorer.  In this example we have two workbooks and their corresponding VBA 
projects open.

A VBA project can contain several different 
types of item.  You’ll learn about most of them 
in the rest of this manual.

Click the yellow folder to change how items 
are displayed: either organised into different 
folders, or displayed in a single list.

You can collapse and expand the items in a 
project or a folder by clicking the + and – 
symbols.

You can use this drop down list at the top of 
the Properties window to select a different 
object.

You can display the list of properties either 
alphabetically or categorised by clicking the 
tabs at the top of the Properties window.

Click this tool on the Developer tab to 
show the Properties window in Excel.
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1.4 VBE Settings

The VBE has numerous settings that you can alter to suit your preferences when writing code.

The Options Dialog Box

To display the Options dialog box, from the menu select:  Tools  |  Options…

Changing Font Formatting Options

The Editor Format tab of the Options dialog box has settings that allow you to change the 
appearance of your code.

The default tab you’ll see is the Editor tab.  
The options here control the behaviour of the 
VBE as you’re writing code.

The options shown in this diagram represent 
the default settings you’ll see when you first 
install Excel.

Having these three boxes checked ensures 
that you’ll see as much help as possible as 
you write your code.

Click this button to open a webpage which 
describes what each of the options on this 
tab of the dialog box does.

The VBE displays different items in your 
code using different formats.  This list shows 
you the different types of text that you’ll see 
when you’re writing code.

Clicking an item in the list reveals the default 
formatting for that type of code.  Here we’ve 
selected Syntax Error Text which appears in 
a bright red font in the VBE.

If you don’t like the default formatting for any 
type of code you can change it by selecting 
different colours, fonts and sizes for the text.

This box shows what the selected text type 
will look like with your current options.  Feel 
free to click  if it looks horrible!
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CHAPTER 2 - WRITING SIMPLE VBA CODE

This chapter introduces you to the basics of writing VBA code.  You won’t create a world-changing 
application here, but you will learn the fundamental techniques you’ll need to start writing one.

2.1 Modules

Before you can start writing code you’ll need somewhere to put it.  You can write VBA code in a 
variety of places in a project but the most common location is in a module.

Inserting a Module

You can insert a module into a project by selecting Insert | Module from the menu.  You can also 
do this using the Project Explorer, as shown in the diagram below:

Your new module will appear in the Modules folder of your project and will automatically open in 
the main window of the VBE.

a) Right-click in the Project Explorer somewhere 
within the project in which you want to insert 
your new module.

b) From the context menu which appears, select 
Insert | Module

You’ll see your new module listed in 
the Modules folder of the project.

The module will also be displayed in 
the main area of the VBE.
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Opening and Closing Modules

When you insert a module it automatically opens.  You can close and reopen modules easily, as 
shown below:

Renaming Modules

To rename a module you change its Name property in the Properties window.

Naming Rules in VBA

The rules for module names apply to the names of everything to which you can assign a name in 
VBA.  These rules are summarised in the table below:

Rules for naming things in VBA

The first character must be a letter.

The name cannot contain a space, or any of the following characters . ! @ $ & #

The maximum length of a name is 255 characters.

You can’t have duplicates of a name in the same scope.  So, for example, you can’t have two modules in the 
same project with the same name, but you can have modules in separate projects with the same name.

It’s best to avoid using the names of existing VBA things.  For example, don’t call a module something like 
Workbook or Worksheet.

You can click the cross in the top 
right corner of a module to close 
it.

Double-click the module in the 
Project Explorer to open it again.

Select the module in the Project Explorer 
and then click into the Name property in 
the Properties window.

Type in a new name for the module and 
then press .  The module’s new name 
will appear in the Project Explorer.
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Naming Conventions

As well as the rules that you must follow for naming things in VBA, there are some conventions 
that you could choose to adopt in order to make your names consistent.

Convention Description Example

Capital Letters Use a capital letter at the start of each word in the name.  This is 
called Pascal Case or, sometimes, Camel Case.

MyFirstModule

Underscores Use an underscore instead of a space to separate words. My_First_Module

Removing Modules

You can delete a module from a project by choosing to remove it.

Exporting Modules

You can export a module to a file which can be moved around independently of a VBA project.

Right-click on a module and choose to Remove it.  Click 
No on the message that appears, unless you do want to 
export the module first.

a) Right-click on the 
module and choose 
the Export File… 
option.

b) Choose a location in 
which to save your 
exported module and 
click the Save button.
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Importing Modules

You can’t run or edit the code in an exported module.  First, you must import it into a VBA project.

Copying Modules to Other Projects

If you have more than one project open at the same time it’s easy to copy modules between them.

If the destination project already contains a module with the same name, the one 
that you’re copying will be renamed automatically to avoid a conflict.

Wise 
Owl’s 
Hint

a) Right click the mouse in the 
Project Explorer and click 
Import File…

b) Double-click on the module 
you want to import to add it 
to the VBA project.

a) Click and drag the module 
from its original project into 
any other project listed in 
the Project Explorer.

b) Release the mouse button 
to drop the module into its 
new project.  A copy of the 
module will be created for 
you automatically.
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2.2 Writing Procedures

Procedure is a generic term used to describe a variety of different programs that you can write in 
VBA.  This section explains how to start writing the simplest type of procedure; a subroutine.

Types of VBA Procedure

There are three types of procedure you can write in VBA: subroutines; functions; and properties.  
The table below summarises what each one is, and shows a fairly useless example of each.

Procedure Description Example

Subroutine This is the simplest type of procedure you can 
write.  A subroutine contains a list of 
instructions for the program to carry out in a 
specific order.  Subroutines are commonly 
referred to as subs or macros.

Function A function is similar to a subroutine in that it 
contains a list of instructions to be executed 
in a particular order.  The main thing which 
distinguishes this type of procedure is that it 
can also return some kind of value or 
reference.

Property Properties are written primarily inside class 
modules.  In basic terms, a property is an 
attribute of an object. There are three 
different forms of the property statement: Let, 
Get and Set.

Inserting Procedures

The easiest way to begin a procedure is simply to start typing in your module.  If you’d like a little 
help you can also insert a procedure from the menu by choosing Insert | Procedure…

a) Give the procedure a name.  Compound names like this one 
are ideal, as they describe what the procedure does and are 
unlikely to be confused with existing Excel VBA keywords.

b) Choose which type of procedure you want to create.  In this 
chapter we’re sticking with subroutines.

c) Choose the scope of your procedure.  Public procedures can 
be called from any module in the project, while private ones 
can only be called in the module in which they are written.
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Starting a Subroutine

Although inserting a procedure can help to remind you of the syntax, most of the time you’ll find it 
easier just to type directly into your module.  The diagram below shows you how to get started.

If, on the other hand, you’ve done something wrong, the VB Editor should make it immediately 
apparent by displaying an error message.

When you’ve successfully created the procedure you can start writing out the instructions to make 
it do something!

a) Start by typing the word sub followed by a space and the name that you 
want to give your procedure.

b) Once you’ve typed in a name for the sub, simply press  on the 
keyboard.

c) Several things should then happen:
• The letter s in the word sub will be capitalised.
• The word Sub turns blue.
• Parentheses appear at the end of the procedure’s name.
• The words End Sub appear.

Here we’re trying to create a 
sub with a space in its name.

The VB Editor makes it obvious that you’ve done something wrong 
by highlighting the text in red and, by default, displaying an error 
message.

The error message is often difficult to interpret, but in this case we 
know exactly what we’ve done wrong.  Click  on the message 
so that you can remove the space and fix the problem.

To make your procedure actually do 
something you just need to write the 
instructions in between the Sub and 
End Sub lines.
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Switching off Syntax Error Messages

When you make a mistake it can be annoying to have to click  on the (often useless) error 
message before you can fix the problem.  Fortunately, you can turn these messages off.

Now when you make a syntax error the line of code will be highlighted in red, but you’ll no longer 
have to clear the error message before you go about fixing the problem.

Setting the Scope of a Procedure

The scope of a procedure determines its availability to other modules in your project.  Unless you 
specify otherwise, all procedures that you create are public.

OK

You can write the word Public at the start of a procedure to 
explicitly show that it is public, but as this is the default you 
can happily omit this word.

Public procedures are available to all of the modules in a 
project.  If you want to restrict the scope of a procedure to a 
single module, use the word Private instead.

From the menu choose Tools | 
Options… and on the Editor 
tab of the dialog box, uncheck 
this box.



Chapter 2 - Writing Simple VBA Code

© Copyright 2024  Page 27

2.3 Writing Neat Code

Taking the time to write neat code can be a difficult habit to get into, but you’ll thank yourself for 
doing it later on!  Neatly-written code is quicker and easier to read and debug.

Commenting Your Code

Comments are a useful way to help other people (or future you) interpret the code you’ve written.  
You can begin a comment by typing an apostrophe followed by your comment text.

Old-school (or just old) programmers may be interested to learn that you can also add comments 
using the Rem statement.

You can write comments on separate lines 
like this one.

You can also write comments at the end of 
a line of code.

These two procedures perform exactly the same 
task at exactly the same speed.  The one on the 
left takes slightly longer to write due to the added 
comments and careful indenting of lines, but if you 
had to solve an issue with the code the one below 
is much more difficult to work with.

Rem is short for remark and behaves just like 
the apostrophe except that you can’t use it to 
add comments at the end of a line of code.
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Commenting Out Multiple Lines of Code

Sometimes you’ll want to temporarily remove some lines of code from your procedures.  Rather 
than deleting them entirely you can simply turn them into comments.

Using Blank Lines and Indenting

As you saw in the screenshot at the start of this section, you can write your procedures in one 
continuous wall of text.  It’s much better to spend time laying out your code neatly however.

Within a procedure you should use blank lines at your discretion to make the code as easy to read 
as possible.  The conventions for indenting code depend on which statements you’re writing.

a) Start by selecting at least 
part of each line that you 
want to comment out.

b) Click this button which you can 
find on the Edit toolbar.  If you 
can’t see this toolbar, from the 
menu select View | Toolbars | 
Edit

c) All of the selected lines will be 
turned into comments.

d) To uncomment the 
lines, select them 
and click this tool 
on the toolbar.

After typing the name of a new procedure press  twice to create a 
blank line between the procedure name and the start of the code.

Press the  key to indent the code within the procedure by one level.

Some VBA statements have a corresponding 
end statement, for example Sub always has a 
matching End Sub.

All of the code written between the beginning 
and end of a statement such as Sub and End 
Sub should be indented one level.

You should continue to indent code each time 
you begin another statement with a beginning 
and end, such as If and End If.

The line at the end of a statement should be 
written at the same indent level as the start of 
the statement.  You can press  or 

+  to outdent code.
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Indenting Multiple Lines

You can indent multiple lines of code at the same time

Changing Indenting Settings

The default width of a tab space in the VB Editor is equivalent to four spaces.  You can change this 
setting by choosing Tools | Options… from the menu.

The Continuation Character

As you begin writing longer, more complex instructions you’ll often find that your screen isn’t wide 
enough to display the code without scrolling left and right.

You can break one line of code into multiple separate lines using the continuation character.  Each 
time you want to split an instruction onto a new line, type in a space followed by an underscore.

On the Editor tab of the dialog box you can 
type a number into this box to change the 
width of a tab space in the VB Editor.

When your code extends past the width of a single screen you can use the scroll bar to move left and right to see it all.

To begin a new line in the middle of a single 
instruction you must type in a space followed 
by an underscore before pressing .

You can’t have blank lines between the lines 
which make up the complete instruction.

Select at least a part of each line 
that you want to indent and then 
press  to indent them.  You 
can outdent the selected lines by 
pressing  and .
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2.4 Writing Simple VBA Instructions

This section is designed as a brief introduction to how the VBA language works to help you get 
started.  We’ll discuss these basic ideas in much more detail in a later chapter.

Objects

VBA is based around the concept of objects.  Some of the main objects you’ll encounter are ones 
that you’ll be familiar with from working with Excel, such as workbooks, worksheets and cells.

Methods and Properties

In order to manipulate an object you can either apply one of its methods, or modify one of its 
properties.

It may seem complicated at first but the rules of grammar in VBA are relatively 
simple and, more importantly, consistent.  Give it some time and you’ll soon be 
speaking VBA like a pro!

Wise 
Owl’s 
Hint

Basic VBA sentence structure follows a Thing.Action pattern, where the Thing is  
the object that you want to manipulate and the Action is what you want to do to it.  
The Thing is always separated from the Action using a full stop.

Wise 
Owl’s 
Hint

Generally speaking, whenever you want to perform an action in 
VBA, you begin the instruction by referring to an object.

After referencing the object you enter a full stop and then use 
another VBA keyword to do something to the object.  The code 
shown in this example activates a workbook, then selects a 
worksheet, and finally changes the value of a range object.

The name of a method is usually a verb and represents some 
kind of action that will be performed on an object.  Different 
objects have different methods that can be applied to them.  
Activate and Select are both examples of methods.

Properties are attributes of objects whose value you can often 
change.  To assign a value to a property you make it equal to 
something.  Here we’re assigning the word Something to the 
Value property of a Range object.
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2.5 Tools to Help with Writing Code

There are several features built in to the VBE that are designed to provide you with help as you 
write your code.

Choosing Which Tools are Enabled

To choose which tools are enabled, from the menu select Tools | Options…

Using IntelliSense to Write Code Faster

IntelliSense is a useful feature which attempts to present you with a list of valid options as you 
write your code.  This happens automatically if you’ve checked the Auto List Members option.

You can also attempt to force the IntelliSense list to appear using a keyboard shortcut.  Pressing 
 +  or  +  will achieve this.Ctrl J Ctrl Spacebar

Beware that not all objects display an IntelliSense list when you type in a full stop 
immediately after referencing them.  A notable example of this is the worksheet 
object.

Wise 
Owl’s 
Hint

On the Editor tab of the dialog 
box, checking these three 
boxes ensures that you’ll 
receive the maximum amount 
of help as you write your code.  
If any of these features annoys 
you, simply uncheck the box to 
disable them.

Checking Auto List Members ensures that the 
IntelliSense list will appear automatically.

Auto Quick Info determines whether tooltips 
will appear to help you.

Auto Data Tips means you see tooltips when 
hovering the mouse over certain bits of code.

After referencing an object you can type 
a full stop to make the IntelliSense list 
appear.

The IntelliSense list displays all of the 
methods and properties for the class of 
object that you’ve referenced.

You can highlight an item in the list either by scrolling 
through it using the cursor keys or by starting to type the 
name of the method or property that you want to use.

To type in the highlighted word you can either press 
 to remain on the same line, or  to move to 

the next line.

You can even make the 
IntelliSense list appear at the 
start of a blank line using one 
of the two keyboard shortcuts 
listed above.
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Using Tooltips

Tooltips provide you with information on the parameters of VBA keywords.  These tooltips will 
appear automatically as long as you have the Auto Quick Info option checked.

If a tooltip disappears and you want to redisplay it, press  +  (that’s a capital i rather than a 
lower case L) on the keyboard.

Viewing Data Tips

Data tips only appear while you’re stepping through your code – a technique that you’ll learn about 
in a later chapter.  To see a data tip simply hover the mouse cursor over a keyword.

Ctrl I

Tooltips will appear after you type in a keyword followed either 
by an open parenthesis or a space.

The tooltip shows the parameter list for the particular 
keyword you have typed in.  You can see the currently 
active parameter highlighted in bold text.

Optional parameters are displayed 
enclosed in a set of square brackets, 
while compulsory parameters aren’t.

The yellow arrow indicates that you’re stepping 
through a procedure – more on this later.

Hover the mouse cursor over a keyword to see 
a data tip appear with more information.

With the text cursor positioned on the same line, press  +  to display 
the tooltip for the command you’re writing.
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