
Visual C# Intermediate

Sample manual - first two chapters

Manual 1110 - 123 pages –

TABLE OF CONTENTS (1 of 3)

© Copyright 2023 Page 2

1 USEFUL SHORT-CUT KEYS Page

1.1 The Best Short-Cut Keys in Visual
Studio

5

 Going to the definition of a variable or
member

5

 Going forward and backward using the
keyboard

5

 Auto-formatting text 6
 Adding a Using statement 7

2 DESIGNING CLASSES Page

2.1 Cats as Objects 8

 Types, Classes and Objects 8
 Instantiation and Termination 8
 Properties 9
 Methods 9
 Encapsulation and Exposure 10
 Inheritance 10

2.2 Our Example – Dating Agency
Customers

10

 Our Customer Class 11
 Envisaging how you will Consume a Class 11

3 CREATING CLASSES Page

3.1 Creating a Class 13

3.2 Namespaces 13

 Example of a Namespace 14
 The Using Statement 14
 Removing Unused Using Statements 14
 Giving Aliases to Namespaces 15
 Our DatingAgency Namespace 15

3.3 Creating a Constructor 15

 Syntax of a Constructor 16
 Example of a Constructor 16

3.4 Fields and Properties 17

 Creating Fields 18
 Properties 18
 Refactoring (encapsulating) fields 18
 The Quickest and Best Way to Create

Properties
20

 Properties which Perform Other Logic 21

3.5 Methods 21

 Void Methods 22
 Methods which Return Values 22
 Choosing between a Property and a

Method
23

3.6 Static Properties and Methods 23

 Example of a Static Property 24
 Example of a Static Method 24

4 FORMS AND CLASSES Page

4.1 Anatomy of a Form 26

 Partial Classes 26
 The Form’s Constructor 27
 Drawing a Form 27

4.2 Instantiating Forms 28

 Setting the Start-Up Form 29
 Showing a Form during an Application 29

5 OVERLOADING Page

5.1 Overloading 30

5.2 Creating Overloaded Methods 30

 Consuming the method 31
 Creating our FIND method 31

5.3 Overloading Constructors 32

6 INHERITANCE Page

6.1 The Concept 34

6.2 Existing Classes in .NET 34

6.3 Inheriting from Existing Classes 35

 The code for this example 36

6.4 Creating your own Hierarchy 37

 Our example – arranging dates between
customers

38

 How to inherit classes – syntax 38
 Calling the base constructor 39
 Creating protected members and fields 39

6.5 Overriding Properties 40

 The problem: duplicate member name 41
 Two possible solutions: NEW versus

OVERRIDE
41

 Using NEW to solve our problem 41
 Using OVERRIDE and VIRTUAL to solve

our problem
42

6.6 Overriding Methods 42

 Calling the BASE method 43

6.7 Sealed Classes and Members 43

 Sealing classes 44
 Sealing methods and properties 44

6.8 Abstract Classes and Members 44

TABLE OF CONTENTS (2 of 3)

© Copyright 2023 Page 3

7 VALUE AND REFERENCE Page

7.1 Types of Memory (Stack and Heap) 46

7.2 Types of Variables 46

 Direct Variables 47
 Indirect Variables 47

7.3 Boxing and Unboxing 47

 System.Object 48
 Boxing 48
 Unboxing 48

7.4 Passing by Value and Reference 49

 Arguments are passed by value by default 50
 Passing arguments by reference using

REF or OUT
50

8 ENUMERATIONS Page

8.1 Creating and Using Enumerations 51

8.2 Customising Enumerations 51

 Enumeration Aliases 52
 Changing Enumeration Integer Values 52
 Changing the Enumeration Data Type 52

8.3 Looping over Enumerations 52

9 STRUCTURES Page

9.1 Overview of Structures 54

9.2 Differences between Structures and
Classes

54

 Structures are Value Types 55
 Other Differences 55

9.3 Familiar Structures! 56

10 ARRAYS Page

10.1 Arrays 58

 Creating single-dimensional arrays 58
 Populating arrays and retrieving items 58
 Looping over arrays 58
 Multi-dimensional arrays 59

11 LISTS Page

11.1 Overview of Lists 60

 An Example of a List 60

11.2 Working with Lists 60

 Creating a List 61
 Adding Items to a List 61
 Counting the Items in a List 61
 Displaying All of the Items in a List (FOR

EACH)
62

 Removing Items from a List 62
 Finding items in a list 62
 Lambda Expression Syntax for Find

Methods
63

11.3 Getting a Subset of a List 64

 Method 1: Using FindAll 64
 Getting a Subset of a List – Method 2:

Using GetRange
64

11.4 Joining and Splitting String Lists 64

12 STACKS AND QUEUES Page

12.1 Queues 66

12.2 Stacks 66

13 DICTIONARIES Page

13.1 Key/Value Pairs 68

13.2 Our Example – the Customer Class 69

13.3 Working with Dictionaries 70

 Creating a Dictionary 70
 Adding to a dictionary 70
 Removing from a Dictionary 71
 Accessing Dictionary Values 71
 Determining if a key exists 71

13.4 Looping over dictionary items 72

 Looping by Key Value Pair 72
 Looping by Key Only 72
 Looping by Value Only 72

13.5 pe 72

14 DATA TABLES Page

14.1 Overview of Data Tables 74

 Referencing System.Data 74
 How data tables work 74

14.2 Working with Data Tables 75

 Creating a Data Table 75
 Adding rows 75
 Looping over rows to retrieve data 76

TABLE OF CONTENTS (3 of 3)

© Copyright 2023 Page 4

15 GETTING STARTED WITH LINQ Page

15.1 What is LINQ? 77

 Referencing the LINQ Namespace 77

15.2 Anatomy of a LINQ Query 77

15.3 Implicit and Explicit Variable Types 78

 LINQ queries are compiled 79
 Implicit variable types 79
 The case for explicit variable types 79

15.4 Examples for Different Enumerable
Sets

80

16 LINQ SYNTAX Page

16.1 Our Example 83

16.2 The SELECT keyword 83

 Transformations 84

16.3 Projections using Anonymous Types 84

 Creating anonymous types 85
 Using LINQ to project data onto

anonymous types
85

 Using anonymous types to merge data 86

16.4 Taking and Skipping 87

16.5 Forcing Query Execution 88

16.6 Ordering a Sequence (ORDERBY) 89

16.7 Filtering (WHERE) 90

 Calling methods in where clauses 92

16.8 Adding Expressions (LET) 92

 Example: listing primes 93

17 TYPES OF DATA MODEL Page

17.1 Our Example 94

 The 3 Types of Data Model 94

17.2 Code First Models 95

 Creating the Table Classes 95
 Creating the Database Class 95
 Creating the Database 96
 Viewing the Database 96

17.3 The Model First Approach 97

17.4 Database First 98

17.5 Thoughts on which Approach to Use 99

 Do you have a Database? 99
 How do you Change your Database? 99
 Do you like Wizards? 100
 Our Recommendation: Database First 100

18 DATABASE FIRST MODELS Page

18.1 Creating a Model 101

 Step 1 - Creating the Database 101
 Step 2 – Adding a New Item 101
 Step 3 – Choosing the Model Type and

Connection
102

 Step 4 – Choosing the EF Version 103
 Step 5 – Choosing the Entities for your

Model
103

 Step 6 - Saving your Model 104

18.2 Updating Models 105

19 LINQ AND ENTITY FRAMEWORKS Page

19.1 Getting Data with LINQ 106

 Creating a Data Context 106
 Selecting Data using LINQ 106
 Using Relationships 107

19.2 Changing Data 108

 Inserting Rows 108
 Deleting Rows 109
 Editing Rows 109

19.3 Returning Anonymous Types 110

19.4 Working with Stored Procedures 111

 Changing Stored Procedures 112

19.5 Partial Classes and Entity
Frameworks

113

 Creating a partial class 113
 Partial classes don’t work with LINQ 114

19.6 Joining Tables 115

20 GROUPING IN LINQ AND EF Page

20.1 Basic Grouping 116

 How grouping works 116

20.2 Grouping into Ranges 117

 Grouping films by their initial letter 118
 Grouping customers by their decade of

birth
118

20.3 Grouping Into and Ordering 119

Chapter 1 - Useful Short-Cut Keys

© Copyright 2023 Page 5

CHAPTER 1 - USEFUL SHORT-CUT KEYS

1.1 The Best Short-Cut Keys in Visual Studio

To make sure that the most useful short-cut keys don’t get buried in the rest of your courseware, this
chapter summarises them.

Going to the definition of a variable or member

You can press the F12 key to go from a variable or method to its definition:

Going forward and backward using the keyboard

These two incredibly useful keys act like the < Back button in a browser:

Key What it does

 Ctrl + - Takes you back to your last used location (whether in the same file
or a different one), if necessary opening a window to show this.

 Ctrl + Shift + - Takes you forward (in effect, this counteracts what Ctrl + - does).

Pressing F12 with your cursor in this method
will take you to its definition (even if this is in
a different file).

Pressing F12 here will take you to the definition of the
variable (this won’t necessarily be in the same procedure,
although it is here).

Chapter 1 - Useful Short-Cut Keys

© Copyright 2023 Page 6

Auto-formatting text

This incredibly useful key combination tells
Visual Studio to format code. To use it,
press Ctrl + K followed by Ctrl + D :

Here’s an example of an effect from pressing these keys:

The menu command that this shortcut key corresponds to.

From disorder (the lines aren’t indented well) …

… comes order (although most of the time Visual
Studio will automatically indent code as you’re typing it
anyway).

Chapter 1 - Useful Short-Cut Keys

© Copyright 2023 Page 7

Adding a Using statement

You can press Ctrl + . to reference a namespace:

a) Type in the name of an object which you think exists (even if you can’t
remember to which namespace it belongs, and press Ctrl + . .

b) Choose to add a using
statement in to your class.

c) Visual Studio even shows
you what effect this will have!

Chapter 2 - Designing Classes

© Copyright 2023 Page 8

CHAPTER 2 - DESIGNING CLASSES

2.1 Cats as Objects

Meet Niki! When the author was young, his family had
a ginger tomcat. This section uses Niki to explain how
classes work in programming.

Types, Classes and Objects

When Niki was born, God (whoever that may be) used a
template to create a new cat object:

The cat template is a class, defining the rules that each cat object must follow. Niki was an object
based on that class.

Niki wasn’t the
sveltest of cats
…

All cats follow the same basic template - 4 paws, whiskers, attitude – but
there are also subtle differences between them which make each cat
unique.

An even more general word for a class is a type – more on this later in this
courseware!

Wise
Owl’s
Hint

Chapter 2 - Designing Classes

© Copyright 2023 Page 9

Instantiation and Termination

In any object’s life, there are two main events:

Event Technical name Associated program to run

Birth Instantiation Constructor

Death Disposal Destructor

So when Niki was born, for example, God ran a constructor program to control what happened at
the point at which Niki appeared in the world.

Properties

A cat (like any other object) has certain properties, each of which can be either read-only, read-write
or write-only. Here are three examples:

Property Type Notes

Colour Read-only
Once a cat has been instantiated (created), you can’t change its colour
(unless, of course, you temporarily dye it), so this is a read-only property.
You can ask what colour a cat is, but you can’t change this colour.

Mood Read-write

It’s usually obvious if a cat is unhappy (it arches its back or miaows), so you
can read the value of this property. However, you can also change this
property (feeding or kicking a cat are actions likely to change its mood
immediately).

Wormed Write-only
You can give a cat worming pills to worm it, but it’s not possible to look at a
cat and say whether it’s been wormed or not – so this is a write-only property
(you can change it, but not inspect it).

Methods

A method is something you do to an object. Here are some of the methods which you can apply to
a cat object (and the arguments – or additional information – that you may need to supply):

Example method Additional arguments

Feed The amount and brand of food.

Stroke The velocity of stroke and the area of the cat to which it is applied.

Kick The area of the cat to which the kick should be applied.

The generic word for a property or a
method is called a member of the class.

Wise
Owl’s
Hint

Chapter 2 - Designing Classes

© Copyright 2023 Page 10

Encapsulation and Exposure

Cats encapsulate their logic, and only expose to the world certain methods and properties. Here are
a couple of examples of private and public properties:

Member Type Scope Notes

FurLength Property Public You can look at a cat and see how long its fur is, so this is
a property which the class exposes to the world.

LungCapacity Property Private From a cat’s point of view, its lung capacity is pretty
important, but it’s not something which is exposed to the
world.

Inheritance

Domestic cats inherit from their species (felis catus), which in turn inherits from its genus, order,
class, phylum and kingdom:

So (for example) the fact that a cat is warm-blooded is defined in the Mammalia class, and the
domestic cat inherits (indirectly) from this base class.

Kingdom

Animalia

Phlyum Class Order Genus Species

Chordata Mammalia Carnivora Felis Felis catus

The Linnaeus classification of life (or taxonomy) is a perfect example of inheritance
in action. It’s not a coincidence that class is short for classification. Note that some
animals can override inherited characteristics (a platypus doesn’t suckle its young,
even though it’s a mammal).

Wise
Owl’s
Hint

Chapter 2 - Designing Classes

© Copyright 2023 Page 11

2.2 Our Example – Dating Agency Customers

Imagine that you want to write a dating agency application (a very simple one!). Here are some of
the forms you’ll need:

In real life, it’s not names or numbers who join dating agencies: it’s people. What object-orientated
programming (OOP) allows you to do is to create and work with objects like this.

Our Customer Class

For our example we will create a Customer object (you could also create classes for dates, invoices,
interests, events, matches and many more). Here are some suggested members:

Member Type Notes

FirstName

LastName
Read/write property Set at the time a new object based on this class is

instantiated, or created.

FullName Read-only property Created by joining the first and last name together.

CustomerNumber Read-only property Assigned when this customer is first created

Greet Method Displays a message box on screen to say hello.

Whether you create a new customer by
typing in their first and last name … … or find an existing customer by typing in their membership

number or a part of their surname …

… you’ll then display their
details in a separate form.

Chapter 2 - Designing Classes

© Copyright 2023 Page 12

Envisaging how you will Consume a Class

The easiest way to design a class is to think how you’ll consume it. Here’s what our final code might
look like:

private void btnOK_Click(object sender, EventArgs e)
{

// create a new customer
Customer c = new Customer();

// say what this person is called
c.FirstName = txtFirst.Text;
c.LastName = txtLast.Text;

// add this person to list of customers
c.Create();

}

When someone clicks on this button to create this member’s
details …

… our code should create a new
Customer object, set his or her first
and last name properties, then apply
the Create method.

 Training | Internet | Intranet | Database systems

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

What we do!

Basic

training
Advanced
training

Systems /
consultancy

O
ff

ic
e

 Microsoft Excel

 VBA macros

 Office Scripts

 Microsoft Access

B
u

s
in

e
s
s

I
n

te
ll
ig

e
n

c
e

 Power BI

 Power Apps

 Power Automate / PAD

S
Q

L
 S

e
r
v
e
r

 SQL

 Reporting Services

 Report Builder

 Integration Services

 Analysis Services

C
o

d
in

g

 Visual C# programming

 VB programming

 DAX

 Python

mailto:sales@wiseowl.co.uk

 Training | Internet | Intranet | Database systems

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

