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CHAPTER 1 - USEFUL SHORT-CUT KEYS

1.1 The Best Short-Cut Keys in Visual Studio

To make sure that the most useful short-cut keys don’t get buried in the rest of your courseware, this 
chapter summarises them.

Going to the definition of a variable or member

You can press the  F12  key to go from a variable or method to its definition:

Going forward and backward using the keyboard

These two incredibly useful keys act like the  < Back  button in a browser:

Key What it does

 Ctrl  +  -   Takes you back to your last used location (whether in the same file 
or a different one), if necessary opening a window to show this.

 Ctrl  +  Shift  +  -  Takes you forward (in effect, this counteracts what  Ctrl  +  -  does).

Pressing  F12  with your cursor in this method 
will take you to its definition (even if this is in 
a different file).

Pressing  F12  here will take you to the definition of the 
variable (this won’t necessarily be in the same procedure, 
although it is here).
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Auto-formatting text

This incredibly useful key combination tells 
Visual Studio to format code.  To use it, 
press  Ctrl  +  K  followed by  Ctrl  +  D  :

Here’s an example of an effect from pressing these keys:

The menu command that this shortcut key corresponds to.

From disorder (the lines aren’t indented well) …

… comes order (although most of the time Visual 
Studio will automatically indent code as you’re typing it 
anyway).
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Adding a Using statement

You can press  Ctrl  +  .  to reference a namespace:

a) Type in the name of an object which you think exists (even if you can’t 
remember to which namespace it belongs, and press  Ctrl  +  .  .

b) Choose to add a using 
statement in to your class.

c) Visual Studio even shows 
you what effect this will have!
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CHAPTER 2 - DESIGNING CLASSES

2.1 Cats as Objects

Meet Niki!  When the author was young, his family had 
a ginger tomcat.  This section uses Niki to explain how 
classes work in programming.

Types, Classes and Objects

When Niki was born, God (whoever that may be) used a 
template to create a new cat object:

The cat template is a class, defining the rules that each cat object must follow.  Niki was an object 
based on that class.

Niki wasn’t the 
sveltest of cats 
…

All cats follow the same basic template - 4 paws, whiskers, attitude – but 
there are also subtle differences between them which make each cat 
unique.

An even more general word for a class is a type – more on this later in this 
courseware!

Wise 
Owl’s 
Hint
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Instantiation and Termination

In any object’s life, there are two main events:

Event Technical name Associated program to run

Birth Instantiation Constructor

Death Disposal Destructor

So when Niki was born, for example, God ran a constructor program to control what happened at 
the point at which Niki appeared in the world.

Properties

A cat (like any other object) has certain properties, each of which can be either read-only, read-write 
or write-only.  Here are three examples:

Property Type Notes

Colour Read-only
Once a cat has been instantiated (created), you can’t change its colour 
(unless, of course, you temporarily dye it), so this is a read-only property.  
You can ask what colour a cat is, but you can’t change this colour.

Mood Read-write

It’s usually obvious if a cat is unhappy (it arches its back or miaows), so you 
can read the value of this property.  However, you can also change this 
property (feeding or kicking a cat are actions likely to change its mood 
immediately).

Wormed Write-only
You can give a cat worming pills to worm it, but it’s not possible to look at a 
cat and say whether it’s been wormed or not – so this is a write-only property 
(you can change it, but not inspect it).

Methods

A method is something you do to an object.  Here are some of the methods which you can apply to 
a cat object (and the arguments – or additional information – that you may need to supply):

Example method Additional arguments

Feed The amount and brand of food.

Stroke The velocity of stroke and the area of the cat to which it is applied.

Kick The area of the cat to which the kick should be applied.

The generic word for a property or a 
method is called a member of the class.

Wise 
Owl’s 
Hint
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Encapsulation and Exposure

Cats encapsulate their logic, and only expose to the world certain methods and properties.  Here are 
a couple of examples of private and public properties:

Member Type Scope Notes

FurLength Property Public You can look at a cat and see how long its fur is, so this is 
a property which the class exposes to the world.

LungCapacity Property Private From a cat’s point of view, its lung capacity is pretty 
important, but it’s not something which is exposed to the 
world.

Inheritance

Domestic cats inherit from their species (felis catus), which in turn inherits from its genus, order, 
class, phylum and kingdom:

So (for example) the fact that a cat is warm-blooded is defined in the Mammalia class, and the 
domestic cat inherits (indirectly) from this base class.

Kingdom

Animalia

Phlyum Class Order Genus Species

Chordata Mammalia Carnivora Felis Felis catus

The Linnaeus classification of life (or taxonomy) is a perfect example of inheritance 
in action.  It’s not a coincidence that class is short for classification.  Note that some 
animals can override inherited characteristics (a platypus doesn’t suckle its young, 
even though it’s a mammal).

Wise 
Owl’s 
Hint
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2.2 Our Example – Dating Agency Customers

Imagine that you want to write a dating agency application (a very simple one!).  Here are some of 
the forms you’ll need:

In real life, it’s not names or numbers who join dating agencies: it’s people.  What object-orientated 
programming (OOP) allows you to do is to create and work with objects like this.

Our Customer Class

For our example we will create a Customer object (you could also create classes for dates, invoices, 
interests, events, matches and many more).  Here are some suggested members:

Member Type Notes

FirstName

LastName
Read/write property Set at the time a new object based on this class is 

instantiated, or created.

FullName Read-only property Created by joining the first and last name together.

CustomerNumber Read-only property Assigned when this customer is first created

Greet Method Displays a message box on screen to say hello.

Whether you create a new customer by 
typing in their first and last name … … or find an existing customer by typing in their membership 

number or a part of their surname …

… you’ll then display their 
details in a separate form.
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Envisaging how you will Consume a Class

The easiest way to design a class is to think how you’ll consume it.  Here’s what our final code might 
look like:

private void btnOK_Click(object sender, EventArgs e)
{

// create a new customer
Customer c = new Customer();

// say what this person is called
c.FirstName = txtFirst.Text;
c.LastName = txtLast.Text;

// add this person to list of customers
c.Create();

}

When someone clicks on this button to create this member’s 
details …

… our code should create a new 
Customer object, set his or her first 
and last name properties, then apply 
the Create method.
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