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CHAPTER 1 - THE MOVIES DATABASE

1.1 Our Example Database

The database used throughout this manual contains 1,200 films, with associated details:

The Role table looks like this:

Each row contains the details of one 
actor who played a role in a film.  

-- who played which roles
SELECT
f.Title AS 'Film',
a.FullName AS 'Actor',
r.Role AS 'Role'

FROM
Film AS f
INNER JOIN Role AS r 
ON f.FilmID = r.FilmID

INNER JOIN Actor AS a ON 
r.ActorID = a.ActorID

ORDER BY
r.RoleID

You could run a query like this to list out all of the roles in 
the database, with who played this part and in which film:

For each film there is an associated country, language, genre, certificate, director and studio.  In addition 
there is a table of actors, and a Role table which links films and actors together (as explained below).
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CHAPTER 2 - STORED PROCEDURES

2.1 Overview

What is a Stored Procedure?

A stored procedure is a set of SQL instructions 
(often just a single SELECT statement) which is 
saved within your database:

Advantages and Disadvantages

Stored procedures have many advantages:

Advantage Notes

Range of commands Whereas a query can only select data, a stored procedure can also insert, update and 
delete rows (not to mention creating and dropping tables).

Debugging You can step through a stored procedure line by line to see what it’s doing (although this 
strangely isn’t that useful).

Parameters Above all, you can pass parameters to a stored procedure (although we won’t do this until a 
later chapter).  For example, you could write a procedure to list all the films made between 
any two given dates, winning at least N Oscars.

Against all this is one potential disadvantage: because stored procedures are so powerful, not all 
IT departments are that keen on giving people the authority to create and execute them!

One common misconception about stored procedures is that they run faster than 
simple queries.  They don’t, since SQL Server will create an optimised execution 
plan in either case.

Wise 
Owl’s 
Hint

CREATE PROC spListFilms
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

This is the code to create a stored procedure, 
here called spListFilms.

Here is the created procedure, in the 
Programmability section of your database.
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2.2 Creating Stored Procedures

Typing in a Stored Procedure

The best way to create a procedure is to press  Ctrl  + N to create a query, then use this syntax:

Creating a Stored Procedure using a Template

This is Microsoft trying to be helpful, but failing!

It’s a common convention to begin procedure names with sp, as above.  However, 
avoid using sp_ as a prefix, since this is reserved for system stored procedures 
(and Microsoft may create one in the future which clashes with your name!).

Wise 
Owl’s 
Hint

USE Movies
GO

-- this must be the first statement
-- in the batch (we needed that GO)
CREATE PROC spListFilms

-- the word AS is a necessary but
-- meaningless link word
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

a) Begin a stored procedure with CREATE PROC then 
give your procedure a name.

b) Although it serves no purpose, you need the keyword 
AS to separate the instruction to create a procedure 
from what it does.

c) Finally, you need to say what your stored procedure 
does.  This can run to hundreds of lines of code – 
creating tables and manipulating data – but for this 
chapter we’ll just stick to selecting a set of rows from 
a table.

a) Expand your database to choose Programmability  
Stored Procedures  New  Stored Procedure …

b) Edit this template.  The trouble is that while you’re a 
stored procedure newbie it’s more baffling than helpful, 
and when you know how to create procedures it’s quicker 
to type them in yourself!
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Executing the Query to Create your Stored Procedure

Once you’ve typed in SQL to create a stored procedure, it’s time to run this:

Viewing your Stored Procedure

To check SSMS has created your stored procedure, 
expand your database as shown here:

a) As for a query, click anywhere in the stored procedure 
and press  F5  to execute it.

b) If all goes well (and you haven’t made any mistakes) you’ll 
see this message, to show you that the stored procedure 
has been successfully created.  

a) In the Programmability section, you should be able to 
expand Stored Procedures to see the one you’ve 
created.

b) If you can’t see the procedure you’ve just created, right-
click on Stored Procedures and choose Refresh as 
shown here to bring the list up to date.

If you still can’t see your stored procedure, by far the most likely reason is that 
you’ve created it in one database (probably the master one), but are looking in 
another!

Wise 
Owl’s 
Hint
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2.3 Altering a Stored Procedure

If you want to change what a stored procedure does, in the strange world of Management Studio 
you need to write script to alter it.

Altering an Open Stored Procedure

If you’ve just been working with a stored procedure, it’s easy to change it:

When you run the script you’ll again see the message Command(s) completed successfully.  
This means SSMS has deleted the old version of your procedure and replaced it with your new 
one.

Altering a Procedure in a Database

If your procedure isn’t open, follow these steps to make changes to it (you can then execute the 
script to change what the procedure does, as shown above):

ALTER PROC spListFilms
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

ORDER BY
f.Title

a) Change the word CREATE to ALTER.  If you don’t do this, 
you’ll see this message when you run your script:

b) Make any other changes to your procedure (here we’ve 
tacked on an ORDER BY clause to sort the films by title).

a) Right-click on the procedure that you want to change, and 
choose to modify it.  SSMS will generate a new query 
containing the script shown below.

b) Although you don’t have to, it’s a good idea to delete these 
added lines of SQL to remove clutter.  Here’s what they do, and 
why you won’t miss them:

Line Notes

USE [Movies] You’re already using this database!

SET ANSI_NULLS ON Obscure changes to the way nulls 
and quotation marks are treated, 
which are of no consequence or 
relevance. 

SET QUOTED_IDENTIFIER ON

If you find this explanation a bit lacking, go to http://bit.ly/2kQ1mfx 
for more details (but you’re not missing anything, honest!).

http://bit.ly/2kQ1mfx
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2.4 Executing Stored Procedures

Before running a procedure, it’s first a good idea to persuade SSMS your procedure exists!

Refreshing your Local Cache

You can (as we’ll see in a moment) run a stored procedure using the EXEC command, but you 
have to persuade Management Studio that your stored procedure actually exists:

The easy way to get SSMS to acknowledge your new procedure exists is to update its memory of 
what’s in your database.  To do this select: Edit  IntelliSense  Refresh Local Cache .

Executing a Procedure 

The commands shown here would run your procedure:

 

The GO above is vital, otherwise SSMS will read the 
command as this:

IntelliSense doesn’t know 
what you’re talking about …

… and when you type in the name of the procedure SSMS underlines it 
in red (although it shows as an error, this command will actually run).

-- run a stored procedure
EXEC spListFilms
GO

-- you don't need the EXEC
spListFilms
GO

The output from these two 
commands: SSMS will run 
the procedure twice, and 
hence show two sets of 
output.

Each of these commands 
would run a procedure 
called spListFilms. 

-- run a stored procedure with
-- a parameter
EXEC spListFilms spListFilms

Without the GO Management Studio would run the two 
commands together, and shown this error message:

However, it’s much easier just to 
press  Ctrl  +  Shift  + R .

Wise 
Owl’s 
Hint
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Altering and Executing a Stored Procedure Together

A common way to run a procedure is immediately 
after creating or changing it:

Selecting a Stored Procedure Name to Run It

For a simple stored procedure (one which you can run without specifying any parameters), the 
easiest way to run it is often just to select it and press  F5  .

You need the GO above because otherwise you would create a script which tried 
to run itself, which SSMS wouldn’t be happy with!

Wise 
Owl’s 
Hint

ALTER PROC spListFilms
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

ORDER BY
f.Title

-- finish creating or altering
-- the procedure!
GO

-- NOW we can run it
spListFilms

This part of the script alters the existing procedure, replacing 
whatever it used to do with new code.  Don’t worry if the old 
code and the new code are actually exactly the same!

After finishing the previous batch of statements, to modify 
what the stored procedure does, we now execute it.

ALTER PROC spListFilms
AS

-- list out all of the 
films
SELECT
f.Title

a) Double-click on the name 
of the procedure to select 
it, then press  F5  .

b) SSMS will run your 
procedure and show its 
output.
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2.5 Renaming and Deleting Stored Procedures

Renaming/Deleting a Procedure with the Menu

To change the name of a stored procedure, 
or delete it, right-click on it:

Deleting a Procedure in Script

To delete a procedure, you drop it:

Renaming a Procedure in Script

To change the name of a procedure in script, create a new version with the new name and then 
delete the old one: 

b) Choose one of these options to either change 
its name or delete it.

a) Find the procedure that you want to rename or 
delete, and right-click on it.

-- delete a procedure
DROP PROC spListFilms

Run this command to 
permanently delete the stored 
procedure called spListFilms.

CREATE PROC spNewName
AS

-- list out all films
SELECT
f.Title

DROP PROC
spListFilms

ALTER PROC spListFilms
AS

-- list out all films
SELECT
f.Title

a) Create script to modify the 
procedure as shown in the 
previous pages.

b) Change ALTER to CREATE, 
type in a new name for the 
procedure then execute this.

c) Change the 
command to drop the 
original procedure, 
and run this.
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2.6 System Stored Procedures

Listing System Stored Procedures

SQL Server comes with many built-in system stored procedures (1,390 in the version being used 
to write this courseware).  Here are two ways to show these:

You can then choose to look at any of them, although you may regret it …

-- list system stored procedures
SELECT o.Name AS 'Procedure'
FROM sys.system_objects as o
WHERE o.type = 'P'
ORDER BY o.Name

Either run this script to show all the system 
objects which are procedures …

… or click on the symbol to list them all.

You can right-click on any of the system 
stored procedures to change them …

… but the contents won’t be easy to read (Wise Owl have 
absolutely no idea what this procedure does, for example!).
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Useful System Stored Procedures

Here are some stored procedures which you might like to try:

Procedure What it does Example results

sp_help Lists out all of the tables, views, 
etc in your database (you can also 
press  Alt  +  F1  to do this).

sp_help ‘Table’ Lists out all the details of (and 
columns in) any specified table 
(eg sp_help ‘Film’)

sp_columns 
‘Table’

Another way to list all the columns 
included in a particular table (eg 
sp_columns ‘Director’).

sp_helptext 
‘Procedure’

Returns the lines in a stored 
procedure, view or function as a 
table (what you do with this is not 
obvious!).

sp_datatype_info Shows information on the data 
types in SQL, to jog your memory.

sp_depends Shows where a particular table is 
used in your database (for 
example, sp_depends ‘Film’) or 
which tables and columns a 
procedure references (eg 
sp_depends ‘spExample’).

You can see more examples of the above at this blog:

http://www.wiseowl.co.uk/blog/s2522/system_stored_procedures.htm 

Wise 
Owl’s 
Hint

http://www.wiseowl.co.uk/blog/s2522/system_stored_procedures.htm
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2.7 Getting Help on SQL

Although every programmer will have their own way to get help, here are couple of general tips.

Context-Sensitive Help

You can press  F1  on any keyword (or collection of keywords) to show help in your web browser:

Tips on Googling

If you’re reading this, you probably don’t need much help on using search engines.  Here’s our 
advice for how to get help on any SQL topic:

Select a word or a selection of words and 
then press  F1  …

… to get SSMS to suggest (in this case, 
very appropriate) help.

Typing T-SQL (short for 
Transact-SQL) ensures you’ll 
get help only on SQL as 
used within Management 
Studio, and not on the MySql 
or Oracle SQL variants.

Whatever it is 
that you want 
help on (in this 
case how to use 
the CHARINDEX 
function in SQL).

It’s sometimes worth adding this to 
omit Microsoft sites, which tend to be 
more technical reference than user 
guide (and in any case you could have 
gone to the Microsoft help site just by 
pressing  F1  on a word, as above).
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