
Advanced SQL

Sample manual - first two chapters

Manual 1057 - 136 pages –

TABLE OF CONTENTS (1 of 5)

© Copyright 2024 Page 2

1 THE MOVIES DATABASE Page

1.1 Our Example Database 7

2 STORED PROCEDURES Page

2.1 Overview 8

 What is a Stored Procedure? 8
 Advantages and Disadvantages 8

2.2 Creating Stored Procedures 9

 Typing in a Stored Procedure 9
 Creating a Stored Procedure using a

Template
9

 Executing the Query to Create your
Stored Procedure

10

 Viewing your Stored Procedure 10

2.3 Altering a Stored Procedure 11

 Altering an Open Stored Procedure 11
 Altering a Procedure in a Database 11

2.4 Executing Stored Procedures 12

 Refreshing your Local Cache 12
 Executing a Procedure 12
 Altering and Executing a Stored

Procedure Together
13

 Selecting a Stored Procedure Name to
Run It

13

2.5 Renaming and Deleting Stored
Procedures

14

 Renaming/Deleting a Procedure with the
Menu

14

 Deleting a Procedure in Script 14
 Renaming a Procedure in Script 14

2.6 System Stored Procedures 15

 Listing System Stored Procedures 15
 Useful System Stored Procedures 16

2.7 Getting Help on SQL 17

 Context-Sensitive Help 17
 Tips on Googling 17

3 VARIABLES Page

3.1 Declaring Variables 18

 Syntax for Declaring a Variable 18

3.2 Using Variables 19

 Setting the Value of a Variable 19
 Showing the Values of Variables 19
 Scope of Variables 20
 Incrementing and Concatenating

Variables
20

 The Importance of Casting 21

3.3 Using Variables with Subqueries 22

 An Alternative Approach: Aggregate
Functions

22

3.4 Storing Column Values in Variables 23

 Storing a Single Row’s Values 23
 Accumulating Numbers 23
 Accumulating Text 24

3.5 Global Variables 25

 Special Considerations when using
@@ROWCOUNT

25

4 VARIABLE AND PARAMETER DATA

TYPES
Page

4.1 Numeric Data Types 26

 Integer Variable/Parameter Types 26
 Decimal and Numeric Types 26

4.2 Character Data Types 27

 Types of Character Storage 27
 Variable Length Data Types 27
 Fixed Length Data Types 27

4.3 Date/Time Data Types 28

TABLE OF CONTENTS (2 of 5)

© Copyright 2024 Page 3

5 STORED PROCEDURE
PARAMETERS

Page

5.1 Overview 29

 Syntax of Parameters 29

5.2 Simple Parameters 30

 Step 1 – Specifying the Parameters 30
 Step 2 – Coding the Parameters 30
 Step 3 – Referencing the Parameters 31
 Using Text Wildcards as Parameters 31

5.3 Running Procedures using Parameters 32

 Positional Arguments 32
 Named Arguments 33
 Right-clicking to Execute a Procedure 33

5.4 Default Parameter Values 34

 Setting Default Values to Null 35
 The Perfect Stored Procedure? 35

5.5 The RETURN Statement 36

5.6 Output Parameters 37

6 CONDITIONS AND LOOPS Page

6.1 IF Conditions 38

 Simple Conditions 38
 Using BEGIN … END 38
 Using ELSE 39
 Nesting Conditions and Indentation 39
 Using CASE to Avoid IF 40

6.2 Looping using WHILE 41

 The Syntax of WHILE Loops 41
 Breaking out of Loops 42

7 SCALAR FUNCTIONS Page

7.1 Overview 43

 Syntax of a Scalar Function 43

7.2 Writing a Scalar Function 44

 Specifying Input Parameters and Return
Types

44

 Writing the Function Itself 44

7.3 Running a Function 45

 Calling a Function on its Own 45
 Calling a Function within a SELECT

Statement
45

7.4 Worked Examples 46

 Example One – Returning a Person’s
Status

46

 Example Two – Profitability 47
 Example Three – Categorisation (by

Oscar Type)
48

7.5 Limitations of Functions 49

 Assessing Function Speed 49

8 ERROR TRAPPING Page

8.1 About Errors 50

8.2 TRY / CATCH 51

 Syntax of TRY / CATCH 51
 Example of a Simple Error Trap 51
 Nesting TRY Statements 52

8.3 Error Functions 53

 T-SQL Error Functions 53
 Error Severity Levels 54
 Showing Errors within a TRY / CATCH

Block
54

8.4 Customising Error Messages 55

 Viewing the Full List of Error Messages 55
 Creating your Own Errors 56
 Customising your own Error Messages 56

9 DELETING DATA Page

9.1 Deleting (Dropping) Tables 57

 Dropping a Table if it Exists 57
 Using Error Trapping to Check Existence 57
 Using SYS.OBJECTS and OBJECT_ID 58

9.2 Deleting Rows 59

 Differences between TRUNCATE and
DELETE FROM

59

TABLE OF CONTENTS (3 of 5)

© Copyright 2024 Page 4

10 UPDATING DATA Page

10.1 The UPDATE Command 60

 An Example – Changing Genres for
Films

60

10.2 Updating using JOIN 61

 The Obvious Answer doesn’t Work 61
 The Correct Syntax 62

11 INSERTING DATA Page

11.1 Three Possible Ways to Insert 63

11.2 Creating Tables from Existing Data
(SELECT INTO)

64

 Step 1 – Getting the Data for your New
Table

64

 Step 2 – Making a New Table 64
 Step 3 – Checking the Table Created 65

11.3 Inserting Multiple Rows into an
Existing Table

66

 Step 1 – Understanding the Syntax 66
 Step 2 – Working out what to do 66
 Step 3 – Mapping the Columns 67
 Step 4 – Creating the Query 67

11.4 Inserting Single Rows 68

 Syntax of INSERT INTO … VALUES 68
 Example Code to Insert a New Row 68
 Inserting a Batch of Single Rows 69

11.5 INSERT INTO – More Possibilities 70

 Missing out Columns 70
 Using a Stored Procedure’s Output 70
 Outputting Inserted Rows 71
 Getting Inserted Row Numbers with

@@IDENTITY
71

12 CREATING TABLES Page

12.1 Setting Up our Example 72

 The Example Used in this Chapter 72
 Creating and Dropping Databases 72

12.2 Creating Tables 73

12.3 Setting Primary Keys 74

 Creating a Primary Key when Creating
Tables

74

 Creating a Primary Key Afterwards 74

12.4 Setting a Default Value for a Column 75

12.5 Preventing Null Values in a Column 76

12.6 Putting Checks or Constraints on a
Column

77

12.7 Foreign Keys and Relationships 78

 Our Example 78
 Foreign Keys 79
 Creating a Foreign Key Constraint 79

12.8 Two Reasons/Ways to Index a
Column

80

 Creating an Index to Speed Up Queries 80
 Enforcing Uniqueness with an Index 80

12.9 A Complete Example 81

13 TRANSACTIONS Page

13.1 The Concept 82

 Syntax of a Transaction 82

13.2 A Simple Example 83

13.3 Case Study – Recategorising Films 84

 The Problem 84
 The Algorithm 84
 The Procedure 85

13.4 Errors and Transactions 86

TABLE OF CONTENTS (4 of 5)

© Copyright 2024 Page 5

14 TEMPORARY TABLES Page

14.1 Overview of Temporary Tables 87

 Local and Global Temporary Tables 87
 How Temporary Tables are Stored 87

14.2 Creating and Deleting Temporary
Tables

88

 Creating Temporary Tables 88
 Deleting Temporary Tables 88

14.3 Scope of Temporary Tables 89

 Temporary Tables are Tied to the
Queries Creating Them

89

 Visibility of Temporary Tables 90
 Scope of Temporary Tables in Stored

Procedures
91

14.4 Case Study – Successful People 92

 Step 1 – Busy Actors (Creating the
Table)

93

 Step 2 – Busy Directors (Inserting Rows) 93
 Final Answer with Problems Solved 94

15 TABLE VARIABLES Page

15.1 About Table Variables 95

15.2 Case Study Revisited 96

16 COMPARING TABLE TYPES Page

16.1 Differences between Table Variables
and Temporary Tables

97

 Speed 97
 Limitations of Table Variables 98
 Limitations of Temporary Tables 98

17 TABLE-VALUED FUNCTIONS Page

17.1 The Two Types of Table-Valued
Functions

99

 Types of Table-Valued Functions 99
 Where to Find Them 99

17.2 In-line Table-Valued Functions 100

 Syntax of In-Line TVFs 100
 Where Stored Procedures Fall Short 100
 The In-Line TVF Solution 101
 Joins with Table-Valued Functions 101

17.3 Multi-Statement Table-Valued
Functions

102

 Syntax of an MSTVF 102
 Example of an MSTVF 103

18 CURSORS Page

18.1 About Cursors 104

 Reasons to Use Cursors 104
 The Syntax of a Basic Cursor 104

18.2 Example of a Cursor 105

19 DEBUGGING IN SQL Page

19.1 Example Used 106

19.2 Debugging 107

 Starting and Stopping Debugging 107
 Stepping Through Code 108
 Setting and Unsetting Breakpoints 108
 Viewing Variable Values by Hovering 109
 Viewing Variables in the Locals Window 109

20 DYNAMIC SQL Page

20.1 The EXEC Command and Dynamic
SQL

110

 Why not to Use Dynamic SQL 110

20.2 Example –Parameterising Row
Selection

111

21 CTES AND DERIVED TABLES Page

21.1 Multi-Stage Queries 112

21.2 Derived Tables 113

21.3 Single CTEs (Common Table
Expressions)

114

 Syntax of Single CTEs 114
 The CTE for our Example 114

21.4 Multiple CTEs 115

 Syntax of Multiple CTEs 115
 Example of a Multiple CTE 116

22 SUBQUERIES Page

22.1 Single-Value Subqueries 117

 Example: Showing the Name of the
Longest Film

117

22.2 ANY, ALL, IN and NOT IN 118

22.3 Correlated Subqueries 119

 Correlated Subqueries: Definition and
Example

119

 Alternatives to Correlated Subqueries 119
 Considering Speed 120
 Using EXISTS to Check whether Rows

are Returned
120

TABLE OF CONTENTS (5 of 5)

© Copyright 2024 Page 6

23 PIVOTING DATA Page

23.1 Overview 121

23.2 The Two Stages of Creating a Pivot
Query

122

 Step 1 – Assembling the Data 122
 Step 2 – Pivoting the Assembled Data 123

23.3 Varying the Number of Row Fields 124

 Pivot Queries with no Row Headings 124
 Pivot Queries with Multiple Row

Headings
125

23.4 Queries Based on Pivot Queries 126

23.5 Getting and Using Dynamic Columns 127

 Step 1 – Get a Comma-Delimited List 127
 Step 2 – Build up the SQL Statement 128
 Step 3 – Test the SQL 128
 Step 4 – Execute the SQL 128

24 TRIGGERS Page

24.1 Overview of Triggers 129

 Syntax of a Trigger 129

24.2 Working with Triggers 130

 Creating a Trigger 130
 Viewing Triggers 130
 Enabling and Disabling Triggers 131
 Deleting Triggers 131

24.3 More Sophisticated Triggers 132

 Tables Created by Triggers 132

24.4 A Case Study: Transactions in
Triggers

133

Chapter 1 - The Movies Database

© Copyright 2024 Page 7

CHAPTER 1 - THE MOVIES DATABASE

1.1 Our Example Database

The database used throughout this manual contains 1,200 films, with associated details:

The Role table looks like this:

Each row contains the details of one
actor who played a role in a film.

-- who played which roles
SELECT
f.Title AS 'Film',
a.FullName AS 'Actor',
r.Role AS 'Role'

FROM
Film AS f
INNER JOIN Role AS r
ON f.FilmID = r.FilmID

INNER JOIN Actor AS a ON
r.ActorID = a.ActorID

ORDER BY
r.RoleID

You could run a query like this to list out all of the roles in
the database, with who played this part and in which film:

For each film there is an associated country, language, genre, certificate, director and studio. In addition
there is a table of actors, and a Role table which links films and actors together (as explained below).

Chapter 2 - Stored Procedures

© Copyright 2024 Page 8

CHAPTER 2 - STORED PROCEDURES

2.1 Overview

What is a Stored Procedure?

A stored procedure is a set of SQL instructions
(often just a single SELECT statement) which is
saved within your database:

Advantages and Disadvantages

Stored procedures have many advantages:

Advantage Notes

Range of commands Whereas a query can only select data, a stored procedure can also insert, update and
delete rows (not to mention creating and dropping tables).

Debugging You can step through a stored procedure line by line to see what it’s doing (although this
strangely isn’t that useful).

Parameters Above all, you can pass parameters to a stored procedure (although we won’t do this until a
later chapter). For example, you could write a procedure to list all the films made between
any two given dates, winning at least N Oscars.

Against all this is one potential disadvantage: because stored procedures are so powerful, not all
IT departments are that keen on giving people the authority to create and execute them!

One common misconception about stored procedures is that they run faster than
simple queries. They don’t, since SQL Server will create an optimised execution
plan in either case.

Wise
Owl’s
Hint

CREATE PROC spListFilms
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

This is the code to create a stored procedure,
here called spListFilms.

Here is the created procedure, in the
Programmability section of your database.

Chapter 2 - Stored Procedures

© Copyright 2024 Page 9

2.2 Creating Stored Procedures

Typing in a Stored Procedure

The best way to create a procedure is to press Ctrl + N to create a query, then use this syntax:

Creating a Stored Procedure using a Template

This is Microsoft trying to be helpful, but failing!

It’s a common convention to begin procedure names with sp, as above. However,
avoid using sp_ as a prefix, since this is reserved for system stored procedures
(and Microsoft may create one in the future which clashes with your name!).

Wise
Owl’s
Hint

USE Movies
GO

-- this must be the first statement
-- in the batch (we needed that GO)
CREATE PROC spListFilms

-- the word AS is a necessary but
-- meaningless link word
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

a) Begin a stored procedure with CREATE PROC then
give your procedure a name.

b) Although it serves no purpose, you need the keyword
AS to separate the instruction to create a procedure
from what it does.

c) Finally, you need to say what your stored procedure
does. This can run to hundreds of lines of code –
creating tables and manipulating data – but for this
chapter we’ll just stick to selecting a set of rows from
a table.

a) Expand your database to choose Programmability
Stored Procedures New Stored Procedure …

b) Edit this template. The trouble is that while you’re a
stored procedure newbie it’s more baffling than helpful,
and when you know how to create procedures it’s quicker
to type them in yourself!

Chapter 2 - Stored Procedures

© Copyright 2024 Page 10

Executing the Query to Create your Stored Procedure

Once you’ve typed in SQL to create a stored procedure, it’s time to run this:

Viewing your Stored Procedure

To check SSMS has created your stored procedure,
expand your database as shown here:

a) As for a query, click anywhere in the stored procedure
and press F5 to execute it.

b) If all goes well (and you haven’t made any mistakes) you’ll
see this message, to show you that the stored procedure
has been successfully created.

a) In the Programmability section, you should be able to
expand Stored Procedures to see the one you’ve
created.

b) If you can’t see the procedure you’ve just created, right-
click on Stored Procedures and choose Refresh as
shown here to bring the list up to date.

If you still can’t see your stored procedure, by far the most likely reason is that
you’ve created it in one database (probably the master one), but are looking in
another!

Wise
Owl’s
Hint

Chapter 2 - Stored Procedures

© Copyright 2024 Page 11

2.3 Altering a Stored Procedure

If you want to change what a stored procedure does, in the strange world of Management Studio
you need to write script to alter it.

Altering an Open Stored Procedure

If you’ve just been working with a stored procedure, it’s easy to change it:

When you run the script you’ll again see the message Command(s) completed successfully.
This means SSMS has deleted the old version of your procedure and replaced it with your new
one.

Altering a Procedure in a Database

If your procedure isn’t open, follow these steps to make changes to it (you can then execute the
script to change what the procedure does, as shown above):

ALTER PROC spListFilms
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

ORDER BY
f.Title

a) Change the word CREATE to ALTER. If you don’t do this,
you’ll see this message when you run your script:

b) Make any other changes to your procedure (here we’ve
tacked on an ORDER BY clause to sort the films by title).

a) Right-click on the procedure that you want to change, and
choose to modify it. SSMS will generate a new query
containing the script shown below.

b) Although you don’t have to, it’s a good idea to delete these
added lines of SQL to remove clutter. Here’s what they do, and
why you won’t miss them:

Line Notes

USE [Movies] You’re already using this database!

SET ANSI_NULLS ON Obscure changes to the way nulls
and quotation marks are treated,
which are of no consequence or
relevance.

SET QUOTED_IDENTIFIER ON

If you find this explanation a bit lacking, go to http://bit.ly/2kQ1mfx
for more details (but you’re not missing anything, honest!).

http://bit.ly/2kQ1mfx

Chapter 2 - Stored Procedures

© Copyright 2024 Page 12

2.4 Executing Stored Procedures

Before running a procedure, it’s first a good idea to persuade SSMS your procedure exists!

Refreshing your Local Cache

You can (as we’ll see in a moment) run a stored procedure using the EXEC command, but you
have to persuade Management Studio that your stored procedure actually exists:

The easy way to get SSMS to acknowledge your new procedure exists is to update its memory of
what’s in your database. To do this select: Edit IntelliSense Refresh Local Cache .

Executing a Procedure

The commands shown here would run your procedure:

The GO above is vital, otherwise SSMS will read the
command as this:

IntelliSense doesn’t know
what you’re talking about …

… and when you type in the name of the procedure SSMS underlines it
in red (although it shows as an error, this command will actually run).

-- run a stored procedure
EXEC spListFilms
GO

-- you don't need the EXEC
spListFilms
GO

The output from these two
commands: SSMS will run
the procedure twice, and
hence show two sets of
output.

Each of these commands
would run a procedure
called spListFilms.

-- run a stored procedure with
-- a parameter
EXEC spListFilms spListFilms

Without the GO Management Studio would run the two
commands together, and shown this error message:

However, it’s much easier just to
press Ctrl + Shift + R .

Wise
Owl’s
Hint

Chapter 2 - Stored Procedures

© Copyright 2024 Page 13

Altering and Executing a Stored Procedure Together

A common way to run a procedure is immediately
after creating or changing it:

Selecting a Stored Procedure Name to Run It

For a simple stored procedure (one which you can run without specifying any parameters), the
easiest way to run it is often just to select it and press F5 .

You need the GO above because otherwise you would create a script which tried
to run itself, which SSMS wouldn’t be happy with!

Wise
Owl’s
Hint

ALTER PROC spListFilms
AS

-- list out all of the films
SELECT
f.Title
, f.OscarWins AS Oscars
, f.RunTimeMinutes AS RunTime

FROM
Film AS f

ORDER BY
f.Title

-- finish creating or altering
-- the procedure!
GO

-- NOW we can run it
spListFilms

This part of the script alters the existing procedure, replacing
whatever it used to do with new code. Don’t worry if the old
code and the new code are actually exactly the same!

After finishing the previous batch of statements, to modify
what the stored procedure does, we now execute it.

ALTER PROC spListFilms
AS

-- list out all of the
films
SELECT
f.Title

a) Double-click on the name
of the procedure to select
it, then press F5 .

b) SSMS will run your
procedure and show its
output.

Chapter 2 - Stored Procedures

© Copyright 2024 Page 14

2.5 Renaming and Deleting Stored Procedures

Renaming/Deleting a Procedure with the Menu

To change the name of a stored procedure,
or delete it, right-click on it:

Deleting a Procedure in Script

To delete a procedure, you drop it:

Renaming a Procedure in Script

To change the name of a procedure in script, create a new version with the new name and then
delete the old one:

b) Choose one of these options to either change
its name or delete it.

a) Find the procedure that you want to rename or
delete, and right-click on it.

-- delete a procedure
DROP PROC spListFilms

Run this command to
permanently delete the stored
procedure called spListFilms.

CREATE PROC spNewName
AS

-- list out all films
SELECT
f.Title

DROP PROC
spListFilms

ALTER PROC spListFilms
AS

-- list out all films
SELECT
f.Title

a) Create script to modify the
procedure as shown in the
previous pages.

b) Change ALTER to CREATE,
type in a new name for the
procedure then execute this.

c) Change the
command to drop the
original procedure,
and run this.

Chapter 2 - Stored Procedures

© Copyright 2024 Page 15

2.6 System Stored Procedures

Listing System Stored Procedures

SQL Server comes with many built-in system stored procedures (1,390 in the version being used
to write this courseware). Here are two ways to show these:

You can then choose to look at any of them, although you may regret it …

-- list system stored procedures
SELECT o.Name AS 'Procedure'
FROM sys.system_objects as o
WHERE o.type = 'P'
ORDER BY o.Name

Either run this script to show all the system
objects which are procedures …

… or click on the symbol to list them all.

You can right-click on any of the system
stored procedures to change them …

… but the contents won’t be easy to read (Wise Owl have
absolutely no idea what this procedure does, for example!).

Chapter 2 - Stored Procedures

© Copyright 2024 Page 16

Useful System Stored Procedures

Here are some stored procedures which you might like to try:

Procedure What it does Example results

sp_help Lists out all of the tables, views,
etc in your database (you can also
press Alt + F1 to do this).

sp_help ‘Table’ Lists out all the details of (and
columns in) any specified table
(eg sp_help ‘Film’)

sp_columns
‘Table’

Another way to list all the columns
included in a particular table (eg
sp_columns ‘Director’).

sp_helptext
‘Procedure’

Returns the lines in a stored
procedure, view or function as a
table (what you do with this is not
obvious!).

sp_datatype_info Shows information on the data
types in SQL, to jog your memory.

sp_depends Shows where a particular table is
used in your database (for
example, sp_depends ‘Film’) or
which tables and columns a
procedure references (eg
sp_depends ‘spExample’).

You can see more examples of the above at this blog:

http://www.wiseowl.co.uk/blog/s2522/system_stored_procedures.htm

Wise
Owl’s
Hint

http://www.wiseowl.co.uk/blog/s2522/system_stored_procedures.htm

Chapter 2 - Stored Procedures

© Copyright 2024 Page 17

2.7 Getting Help on SQL

Although every programmer will have their own way to get help, here are couple of general tips.

Context-Sensitive Help

You can press F1 on any keyword (or collection of keywords) to show help in your web browser:

Tips on Googling

If you’re reading this, you probably don’t need much help on using search engines. Here’s our
advice for how to get help on any SQL topic:

Select a word or a selection of words and
then press F1 …

… to get SSMS to suggest (in this case,
very appropriate) help.

Typing T-SQL (short for
Transact-SQL) ensures you’ll
get help only on SQL as
used within Management
Studio, and not on the MySql
or Oracle SQL variants.

Whatever it is
that you want
help on (in this
case how to use
the CHARINDEX
function in SQL).

It’s sometimes worth adding this to
omit Microsoft sites, which tend to be
more technical reference than user
guide (and in any case you could have
gone to the Microsoft help site just by
pressing F1 on a word, as above).

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

WHAT WE DO

ONLINE
TRAINING

MANCHESTER
OR LONDON

AT YOUR
OFFICE

BESPOKE
CONSULTANCY

O
F
F
I
C

E

3
6

5

Microsoft

Excel
 ✓ ✓ ✓ ✓

VBA

macros
 ✓ ✓ ✓ ✓

Office

Scripts
 ✓ ✓

Microsoft

Access
 ✓

P
O

W
E
R

P
L
A

T
F
O

R
M

Power BI

and DAX
 ✓ ✓ ✓ ✓

Power

Apps
 ✓ ✓

Power

Automate
 ✓ ✓ ✓ ✓

S
Q

L

S
E
R

V
E
R

Reporting

Services
 ✓ ✓ ✓ ✓

Report

Builder
 ✓ ✓ ✓

Integration

Services
 ✓ ✓ ✓ ✓

Analysis

Services
 ✓ ✓

 C
O

D
I
N

G

L
A

N
G

U
A

G
E
S

SQL ✓ ✓ ✓ ✓

Visual C# ✓ ✓ ✓ ✓

Python ✓ ✓ ✓ ✓

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

