
Introduction to SQL

Sample manual - first two chapters

Manual 1050 - 148 pages –

TABLE OF CONTENTS (1 of 5)

© Copyright 2024 Page 2

1 DESIGNING DATABASES Page

1.1 The Four Stages of Database Design 7

 Stage 1 – Deciding what to Include 7
 Stage 2 – Dividing Data into Tables 8
 Stage 3 – Choosing a Primary Key for

each Table
9

 Stage 4 – Creating Relationships and a
Database Diagram

10

1.2 Many-to-Many Relationships 11

2 SQL SERVER MANAGEMENT

STUDIO
Page

2.1 Starting to Use Management Studio 12

2.2 Object Explorer 13

 Useful Start-up Options 13

3 CREATING A DATABASE AND

TABLES
Page

3.1 Creating the Database 14

 The Files Created 14

3.2 Creating Tables 15

3.3 Setting an Identity Primary Key 16

3.4 Creating Columns 17

 Data Types Explained in this Chapter 17
 Other Data Types in SQL Server 17

3.5 Whole Numbers 18

 Integer Field Types 18
 Logical Field Types 18

3.6 Other Numerical Fields 19

 Decimal and Numeric Field Types 19
 Float and Real Data Types 19

3.7 Character Data Types 20

 Types of Character Storage 20
 Variable Length Data Types 20
 Fixed Length Data Types 20

3.8 Date/Time Data Types 21

 Entering Dates into a Table 21

3.9 Default and Null Values 22

 Allowing Nulls 22
 Default Values 22

3.10 Database Diagrams 23

 Creating a Database Diagram 23
 Creating Relationships 24
 Database Diagram Support Objects Error 24

4 QUERIES Page

4.1 Basic SELECT Statements 25

 Where to Put your Commas 25

4.2 Creating Queries 26

 Starting a New Query 26
 Choosing the Right Database 26

4.3 Running Queries 27

 Parsing a Query 27
 Executing a Query 27
 Viewing Information on a Query’s

Execution
28

 Cancelling a Running Query 28
 Redirecting Query Output 28

4.4 Dealing with Errors 29

 Displaying Line Numbers 29

4.5 Using IntelliSense 30

 Refreshing IntelliSense 30

4.6 Multiple SQL Commands 31

4.7 Saving, Opening and Closing Queries 32

 Saving Queries 32
 Opening Queries 32
 Closing Queries 33

5 LAYING OUT QUERIES Page

5.1 Using Case 34

5.2 Indentation and Word Wrap 35

 Changing Tab Settings 35
 Word Wrap 35

5.3 Comments 36

 Commenting Out Blocks of Code 36

5.4 Colours in SQL 37

 Changing the Default Colours 37

5.5 Auto-formatting SQL 38

TABLE OF CONTENTS (2 of 5)

© Copyright 2024 Page 3

6 THE SELECT STATEMENT Page

6.1 SELECT Statement Syntax 39

 Mnemonic for Order of Commands 39

6.2 Qualified Tables and Columns 40

 Dragging Tables/Columns onto a Query 40
 Specifying the DBO Schema and

Database
40

6.3 Table Aliases 40

 Reason 1 for Aliases – Easier to Refer to
Field Names

41

 Reason 2 for Aliases – Joins 42
 Changing a Table Alias 42

6.4 Column Aliases 43

 Basic Column Aliases 43
 Other Ways to Create Column Aliases 43
 Aliases in WHERE and ORDER BY

Clauses
44

6.5 Ordering Rows 45

 Simple Sorting 45
 Sorting by Multiple Columns 45

6.6 Miscellaneous SELECT Tricks 46

 Selecting All Columns Using * 46
 Selecting Unique Rows 46
 Showing Top and Bottom Rows 47
 Including Ties 47

6.7 Using UNION to Combine Results 48

7 QUERY DESIGNER Page

7.1 Starting Query Designer 49

 What Query Designer is and does 49
 Starting Query Designer 49

7.2 Using Query Designer 50

 Choosing Tables 50
 Adding/Removing Tables 50
 The Parts of Query Designer 51
 The Non-Existent Results Pane/Execute

Button
51

 Working with Columns 52
 Finishing Work in Query Designer 52

7.3 Editing Generated SQL 53

7.4 Advanced Features 54

 Inner and Outer Joins 54
 Grouping 54

8 CRITERIA USING WHERE Page

8.1 The WHERE Clause 55

 Relational Operators 55

8.2 Criteria with Numbers 56

 Using Comparisons 56
 Finding Numbers in a Given Range 56

8.3 Criteria using Text 57

 Exact Matches 57
 Wildcard Matches using LIKE 57
 Using Special Characters with LIKE 58
 Ranges and Wildcards 58
 Using Relational Operators with Text 59
 Case Sensitivity 59

8.4 Criteria for Dates 60

 Using Dates in Criteria 60
 Using Dates with Wildcards 60

8.5 Combining Criteria 61

8.6 Nulls 62

 An Example of Testing for Nulls 62
 Entering Nulls into a Table 62

9 EXPORTING TO EXCEL Page

9.1 Copying and Pasting 63

 Copying Column Headers by Default 63

9.2 Exporting Data 64

 Step 1 – Getting the Query 64
 Step 2 – Starting to Export Data 64
 Step 3 – Choosing the Source 64
 Step 4 – Choosing the Destination 65
 Step 5 – Specifying the Data to Export 66
 Step 6 – Specifying how to Export 66
 Step 7 – Finishing the Export 66

TABLE OF CONTENTS (3 of 5)

© Copyright 2024 Page 4

10 CALCULATIONS Page

10.1 Creating Calculated Columns 68

 Giving Calculated Columns Aliases 68
 Using Column Aliases in ORDER BY

Clauses
68

 Column Aliases Don’t Work in WHERE
Criteria

69

10.2 Using SQL Functions 70

 Typing an SQL Function 70
 Getting the Full List of Functions 70

10.3 Casting Data Types 71

 The Need for Casting 71
 Data Type Precedence 72
 The CAST Function 73
 The CONVERT Function 73

10.4 Numerical Calculations 74

 Mathematical Symbols and BODMAS 74
 The Modulus Operator (%) 74
 Mathematical Functions 75
 The Importance of Casting Numbers for

Calculations
76

 A Short-Cut to Forcing the Right Number
Type

76

10.5 Text Calculations 77

 Concatenating Text using the CONCAT
Function

77

 Concatenating Text Using the Plus Sign
(with Data Conversion)

77

 Functions to Turn Numbers into Text 79
 Functions to Search for and Replace Text 79
 Functions for Extracting Text 80
 Changing the Case of Text 80
 Functions for Trimming Text 81
 Other Text Functions 81
 Worked Example – 1 82
 Worked Example – 2 82
 3 82

10.6 Dealing with Nulls 83

 The ISNULL Function 83
 The COALESCE Function 84

10.7 Testing Conditions using IIF 85

11 THE CASE EXPRESSION Page

11.1 The Searched Case Expression 86

 Example: Film Bands 86
 Example: Film Era 87
 Using CASE in WHERE Criteria 87

11.2 The Simple Case Statement 88

11.3 Nested CASE Statements 89

12 DATE CALCULATIONS Page

12.1 How Dates and Times Work 90

 How SQL Server Stores Dates and
Times

90

 Displaying Dates/Times 90
 GETDATE – the Current Date/Time 91
 Dates Prefer American Format 91

12.2 Formatting Dates using FORMAT 92

 The Available Codes 92
 Using the Culture Argument 93
 How Slow is the Format Function? 93

12.3 Formatting Dates using CONVERT 94

12.4 Parts of a Date: DATEPART and
DATENAME

95

 Displaying a Day Suffix 96

12.5 Getting the Difference between Dates 96

 Subtracting One Date from Another 97
 The DATEDIFF Function 97

12.6 Calculating Ages Correctly 98

 Using DateDiff 98
 Dividing Someone’s Age in Days by 365 98
 Getting the Exact Age 99

12.7 Adding Dates using DATEADD 100

TABLE OF CONTENTS (4 of 5)

© Copyright 2024 Page 5

13 JOINS Page

13.1 Overview of Joins 101

 What is a Join? 101
 The Types of Join 101

13.2 Understanding your Database 102

 How Relationships Work (Reminder) 102

13.3 Easy Joins, using Query Designer 103

13.4 Inner Joins 104

 The Syntax of an Inner Join 104
 Our Example – Joining the Film and

Director Tables
104

 Joining more than One Table 105
 Variations on Inner Join Syntax 105
 Composite Joins 106
 Joining by Expressions 106

13.5 Outer Joins 108

 Outer Joins using Query Designer 108
 Outer Joins in SQL 109
 Left and Right Outer Joins 109
 Picking Out Unmatched Rows 110
 Full Outer Joins 110

13.6 Cross Joins 111

 A Practical Example of Cross Joins 111

13.7 Self-Joins 112

14 SUMMARISING DATA Page

14.1 Simple Summarising 113

 Syntax of a Simple Summary 113

14.2 Counting 114

 Counting All of a Table’s Rows 114
 Counting Non-Null Columns 114
 Counting Unique Values 115

14.3 Grouping 116

 Why you Need GROUP BY 116
 The GROUP BY Clause 116
 Grouping by Multiple Columns 117
 Grouping by Expressions 117
 Grouping without Aggregating 118

14.4 Filtering Results using HAVING 119

14.5 Casting Data for (eg) Averages 120

14.6 Dealing with Nulls 121

 The Default Treatment of Nulls 121
 Forcing SQL to Include Nulls 121

14.7 Additional Options when Grouping 122

 Using ALL to Show Missing Rows 122
 Using CUBE to Show All Combinations 122
 Using GROUPING to Show Levels 123

15 VIEWS Page

15.1 Why Views are Useful 124

 Use 1: Pre-Joining Tables 124
 Use 2: Virtually Renaming Columns 125

15.2 Views using the Designer 126

 Starting the Designer 126
 Choosing Columns 126
 Sorting and Filtering 127
 Adding Grouping 127
 Executing a View 128
 Saving and Closing Views 129
 Seeing your View in Object Explorer 129
 Running a View 130
 Changing a View 130

15.3 Scripting Views 131

 Creating a New View 131
 Changing an Open View in Script 132
 Changing a View’s Script from Object

Explorer
132

15.4 Switching between the Designer and
Scripting

133

TABLE OF CONTENTS (5 of 5)

© Copyright 2024 Page 6

16 CTES AND DERIVED TABLES Page

16.1 Multi-Stage Queries 134

16.2 Derived Tables 135

16.3 Single CTEs (Common Table
Expressions)

136

 Syntax of Single CTEs 136
 The CTE for our Example 136

16.4 Multiple CTEs 137

 Syntax of Multiple CTEs 137
 Example of a Multiple CTE 138

17 SUBQUERIES Page

17.1 Single-Value Subqueries 139

 Example: Showing the Name of the
Longest Film

139

17.2 ANY, ALL, IN and NOT IN 140

17.3 Correlated Subqueries 141

 Correlated Subqueries: Definition and
Example

141

 Alternatives to Correlated Subqueries 141
 Considering Speed 142
 Using EXISTS to Check whether Rows

are Returned
142

18 RANKING AND PERCENTILES Page

18.1 Ranking and Numbering 143

 Simple Row Numbering 143

18.2 Leading and Lagging 144

 Example of LAG: Actors Born One Week
Apart

144

18.3 Percentiles 145

 Percentile Rankings 145

Chapter 1 - Designing Databases

© Copyright 2024 Page 7

CHAPTER 1 - DESIGNING DATABASES

The world runs on relational databases. If you understand the principles upon which these are
built, you’ll find it much easier to write SQL to get information out of them!

1.1 The Four Stages of Database Design

There are four stages to designing a relational database, shown below (using the example of
creating a simple database to hold films; or movies, if you must).

Stage 1 – Deciding what to Include

A good way to do this is to create a spreadsheet of the data you want to include for each film:

The aim of designing a relational database is to ensure that you don’t hold information twice:

This manual gives an overview only of database design principles. If you want to
delve deeper, try Googling phrases like Third Normal Form, Database
Normalisation or Entity Diagram. If nothing else, this will give you an impressive
search history in your browser!

Wise
Owl’s
Hint

We want to assign each film to a director, but we don’t want to have to type each director’s name in
over and over again!

Not only is holding duplicate information inefficient,
but it also means that spelling mistakes will creep in.
Here listing out films directed by Peter Weir would
miss out the last two films, as his name has been
misspelt.

Chapter 1 - Designing Databases

© Copyright 2024 Page 8

Stage 2 – Dividing Data into Tables

Having decided what data you want to include, the next stage of database design is to decide
which table each bit of information belongs to:

For our example above, there are clearly 3 separate entities: films, the directors who made them
and the studios which produced them. Here are the fields that each table could contain:

Table Fields

Film Title and Oscars Won, plus something to identify which director and which studio made it

Director Director name and Date of birth, plus some unique identifier for the director

Studio Studio name, plus some unique identifier for the studio

What you need to do next is to decide what form these unique identifiers should take.

There’s no magic wand to make this easier, other than bitter experience of getting
it wrong and having to start again! A good guideline is that if you find yourself
typing in something twice, it probably belonged in a different table.

Wise
Owl’s
Hint

These are all details to do with the
film itself.

These are to do with the
director (name / birthday).

These are details to do
with the studio.

Chapter 1 - Designing Databases

© Copyright 2024 Page 9

Stage 3 – Choosing a Primary Key for each Table

The primary key for a table is a field which tells you exactly which record you’re considering (for
example, if you know a film’s DirectorID you can look up all of the director’s other details).

For our example, we could use the director and studio names as our primary keys, but SQL Server
works most efficiently if the primary key is as short as possible, so we’ll create new fields instead:

Here’s what The Sound of Music would now look like:

If you’re beginning to think that relational databases are just like a lot of
spreadsheets joined together with a more efficient version of a VLOOKUP formula
in Excel, you’re absolutely right!

Wise
Owl’s
Hint

From the above definition, it follows that two records in a table can’t have the same
value for the primary key field – the field is unique.

Wise
Owl’s
Hint

The primary key for each table is a number which
uniquely identifies which studio, film or director
we’re looking at.

Each film contains fields specifying who directed
the film, and which studio made it.

Including the director’s unique number allows us to look up
all their other details:

Including the studio’s unique number allows us to
look up its name:

Chapter 1 - Designing Databases

© Copyright 2024 Page 10

Stage 4 – Creating Relationships and a Database Diagram

The last step in designing a database is to decide for each relationship that you create whether it is
one-to-many or many-to-one (parent-child or child-parent):

Database diagrams often involve hundreds of tables:

The Movies database we’ll use in this courseware contains just 9 tables, and hence is untypically simple.

These are the foreign keys
in each relationship (the
fields at the child end of the
line). Each director id, for
example, can appear once
and once only in the
director table, but can and
will be repeated many times
in the Film table (once for
each film that a director has
made).

These are
the primary
keys in the
relationship
(the field at
the parent
end of the
line). Each
director can
make many
films, and
likewise
each studio
can release
many films.

Chapter 1 - Designing Databases

© Copyright 2024 Page 11

1.2 Many-to-Many Relationships

There’s no such thing as a many-to-many relationship in SQL Server, but they do exist in real life:

The solution to this problem is to create a table that
is a child to both of the two parent tables, as here:

Here’s what the database would look like:

Here are 3 rows from the Role table:

Spider-Man
Jurassic Park
Mission Impossible
Superman Returns
Top Gun
Rain Man
Titanic
Waterworld
Pearl Harbor
Transformers

Sam Neill
Tom Cruise
Laura Dern
Jeff Goldblum
Jon Voight
Vanessa Redgrave
Kirsten Dunst
Naomi Watts
Jack Black
Adrien Brody

Sam Neill
Tom Cruise
Laura Dern
Jeff Goldblum
Jon Voight
Vanessa Redgrave
Kirsten Dunst
Naomi Watts
Jack Black
Adrien Brody

Tom Cruise
has appeared
in lots of films,

but equally
Mission:

Impossible
has lots of
actors in it.

Spider-Man
Jurassic Park
Mission Impossible
Superman Returns
Top Gun
Rain Man
Titanic
Waterworld
Pearl Harbor
Transformers

Film

Role

Actor

The Role table links the Film
and Actor tables. Each film
can contain many roles
(otherwise a film could only
have a single actor), but
likewise each actor can have
many roles (otherwise they
would never work again after
completing their first film).

Film number 1 appears twice in
this list, as does actor number 1.

Here are the films
and actors who are
represented by these
rows of data (the
duplicate film name
was Jurassic Park,
and duplicated actor
turns out to be Tom
Cruise).

Chapter 2 - SQL Server Management Studio

© Copyright 2024 Page 12

CHAPTER 2 - SQL SERVER MANAGEMENT STUDIO

If you’re writing SQL to get information out of a database created using SQL Server, the chances
are that you’ll use SSMS (SQL Server Management Studio) as your authoring tool.

2.1 Starting to Use Management Studio

You can start SSMS like any other application – here are a couple of ways using Windows 10:

You can then choose a database to use (or connect to):

Click on the Windows icon, and
choose the program that you want
to run …

… or click on this tool and type in part of the program name (here typing
managem has been enough to bring up the program name in the list).

You will see the SQL Server logo on
screen while it loads:

You can then choose from the
dropdown list which of your
company’s servers you want to
connect to (your IT people should be
able to advise on which to choose).
If you use Windows authentication,
you won’t have to type in any more
user names or passwords.

Chapter 2 - SQL Server Management Studio

© Copyright 2024 Page 13

2.2 Object Explorer

When Management Studio loads, you should see the Object Explorer window (if it’s not visible,
press F8 to show it):

Useful Start-up Options

You can control what happens when you start Management Studio. To do this, from the menu
select Tools Options, then complete the dialog box which appears as follows:

You can click on the symbol to expand:

• Databases, to see the Movies database; then
• Movies, to see what it contains; then
• Tables, to see what tables there are.

If you think Object Explorer is taking up too much room,
click on this pin (it will go from vertical to horizontal, and
the window will collapse until needed). Click again on
the pin to make the window permanently visible again.

a) System objects clutter
up SQL Server, and
(in this owl’s opinion)
are best hidden,
although you won’t
see a huge amount of
difference.

b) You can click on the drop arrow and
choose (for example) to show a blank
query as well as Object Explorer
whenever you open Management
Studio.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

WHAT WE DO

ONLINE
TRAINING

MANCHESTER
OR LONDON

AT YOUR
OFFICE

BESPOKE
CONSULTANCY

O
F
F
I
C

E

3
6

5

Microsoft

Excel
 ✓ ✓ ✓ ✓

VBA

macros
 ✓ ✓ ✓ ✓

Office

Scripts
 ✓ ✓

Microsoft

Access
 ✓

P
O

W
E
R

P
L
A

T
F
O

R
M

Power BI

and DAX
 ✓ ✓ ✓ ✓

Power

Apps
 ✓ ✓

Power

Automate
 ✓ ✓ ✓ ✓

S
Q

L

S
E
R

V
E
R

Reporting

Services
 ✓ ✓ ✓ ✓

Report

Builder
 ✓ ✓ ✓

Integration

Services
 ✓ ✓ ✓ ✓

Analysis

Services
 ✓ ✓

 C
O

D
I
N

G

L
A

N
G

U
A

G
E
S

SQL ✓ ✓ ✓ ✓

Visual C# ✓ ✓ ✓ ✓

Python ✓ ✓ ✓ ✓

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

