
Excel VBA

Sample manual - first two chapters

Manual 1043 - 229 pages –

TABLE OF CONTENTS (1 of 9)

© Copyright 2024 Page 2

1 THE VISUAL BASIC EDITOR Page

1.1 The Visual Basic Editor 11

 Displaying the Developer Ribbon Tab 11
 Opening the VB Editor 11

1.2 The VBE Screen 12

 Opening and Closing Windows 12
 Repositioning Windows 13
 Docking Windows 13

1.3 The Main VBE Windows 14

 The Project Explorer 14
 The Properties Window 14

1.4 VBE Settings 15

 The Options Dialog Box 15
 Changing Font Formatting Options 15

2 WRITING SIMPLE VBA CODE Page

2.1 Modules 16

 Inserting a Module 16
 Opening and Closing Modules 17
 Renaming Modules 17
 Naming Rules in VBA 17
 Naming Conventions 18
 Removing Modules 18
 Exporting Modules 18
 Importing Modules 19
 Copying Modules to Other Projects 19

2.2 Writing Procedures 20

 Types of VBA Procedure 20
 Inserting Procedures 20
 Starting a Subroutine 21
 Switching off Syntax Error Messages 22
 Setting the Scope of a Procedure 22

2.3 Writing Neat Code 23

 Commenting Your Code 23
 Commenting Out Multiple Lines of Code 24
 Using Blank Lines and Indenting 24
 Indenting Multiple Lines 25
 Changing Indenting Settings 25
 The Continuation Character 25

2.4 Writing Simple VBA Instructions 26

 Objects 26
 Methods and Properties 26

2.5 Tools to Help with Writing Code 27

 Choosing Which Tools are Enabled 27
 Using IntelliSense to Write Code Faster 27
 Using Tooltips 28
 Viewing Data Tips 28

3 SAVING AND OPENING FILES Page

3.1 Saving VBA Code 29

 Where is Code Stored? 29
 Saving VBA Code 29
 Choosing the Correct File Type 30

3.2 The Personal Macro Workbook 31

 Creating the Personal Macro Workbook 31
 Viewing the Personal Macro Workbook in

the VBE
31

 Viewing the Personal Macro Workbook in
Excel

32

 Saving the Personal Macro Workbook 32
 Where the Personal Macro Workbook is

Stored
32

3.3 Opening Files Which Contain VBA
Code

33

 Choosing to Enable VBA Content 33
 Macro Security Settings 33

3.4 Trusted Documents 34

 Viewing Trusted Document Settings 34
 Disabling Trusted Documents 34

4 RUNNING VBA CODE Page

4.1 Running Code from Excel 35

 Choosing from a List of Macros 35

4.2 Running Code from the VBE 36

 Running a Subroutine 36
 The Debug Toolbar 37
 Compiling Code 37
 Stepping Into and Through Code 38
 Reaching the End of a Procedure 38
 Interrupting a Running Procedure 39

4.3 When Things Go Wrong 40

 Syntax Errors 40
 Compile Errors 40
 Run-Time Errors 41

TABLE OF CONTENTS (2 of 9)

© Copyright 2024 Page 3

5 BASIC USER INTERFACES Page

5.1 Keyboard Shortcuts 42

 Assigning Keyboard Shortcuts in Excel 42
 Assigning Keyboard Shortcuts in Code 42

5.2 Form Control Buttons 43

 Drawing Form Control Buttons 43
 Editing Form Control Buttons 43

5.3 ActiveX Command Buttons 44

 Drawing ActiveX Command Buttons 44
 Attaching Code to the Click Event 44

5.4 AutoShapes and Pictures 45

 Inserting Shapes and Pictures 45
 Assigning a Macro to a Shape or Picture 45

5.5 The Excel Ribbon 46

 Modifying the Quick Access Toolbar 46
 Creating Ribbon Tabs 47

6 WORKING WITH RANGES Page

6.1 Referring to a Range Object 48

 Referring to a Single Cell 48
 Referring to a Block of Cells 48
 Using Range Names to Refer to Cells 49
 Referring to Non-Contiguous Ranges 49

6.2 The Cells Property 50

 Referring to a Cell with Row and Column
Numbers

50

 Referring to a Block of Cells 50
 Referring to Every Cell on a Worksheet 50

6.3 Rows and Columns 51

 The Range, Rows and Columns
Properties

51

 The EntireRow and EntireColumn
Properties

51

6.4 Referring to the Active or Selected Cell 52

 ActiveCell and Selection 52
 Activate vs. Select 52

6.5 The Offset Property 53

 Offsetting from the ActiveCell 53
 Offsetting a Block of Cells 53

6.6 The End Property 53

 The Four Directions of the End Property 54
 Finding the Start of a List 54
 Finding the Bottom Right Corner of a

Table
55

 Finding the Next Blank Cell in a Column 55
 Selecting from the Top to the Bottom of a

List
56

 Dealing with Blank Cells 56

6.7 Referring to Regions of Cells 57

 The CurrentRegion Property 57
 The CurrentArray Property 57

6.8 Referring to Special Cells 58

6.9 Referring to Used Cells 59

 Referring to the Used Range 59
 The Last Used Cell 59

7 COLOURS IN VBA Page

7.1 Excel Colours 60

 The Two Colour Properties of a Range 60
 The ColorIndex Colours 60

7.2 Colour Numbers and Names 61

 VBA Colour Constants 61
 Excel’s RGB Constants 61
 The RGB Function 61

TABLE OF CONTENTS (3 of 9)

© Copyright 2024 Page 4

8 DISPLAYING MESSAGES Page

8.1 The MsgBox Function 62

 Syntax and Parameters of a Message Box 62

8.2 Displaying Messages 63

 Displaying a Simple Message 63
 A Note on Using Parentheses 63
 Concatenating a Message 64
 Changing Text Alignment 64
 Using Multiple Lines 65
 Customising the Title 65

8.3 Icons and Buttons 66

 Modifying the Buttons 66
 Setting the Default Button 66
 Displaying Icons 67
 Combining Buttons and Icons 67

9 USER INPUTS Page

9.1 Asking Users for Input 68

 Where to Store User Input 68

9.2 Asking a Question with a Message Box 69

 The Possible Results of a Message Box 69
 Storing the Result of a Message Box 69
 Testing Which Button was Clicked 70

9.3 The VBA InputBox Function 71

 Syntax and Parameters of the InputBox
Function

71

 Using an Input Box to Ask a Question 72
 Setting a Default Value 72
 What Happens if You Click Cancel? 72
 Inputting Different Types of Data 73

9.4 The Excel-Specific InputBox Method 74

 Using the Excel Input Box 74
 Customising the Title and Default Value 74
 Setting the Data Type of the Input Box 75
 Entering an Invalid Value 75
 Selecting Cells 76
 Returning a Reference to a Range 76

10 VARIABLES AND DATA TYPES Page

10.1 Data Types in VBA 77

 Summary of the VBA Data Types 77

10.2 Declaring and Using Variables 78

 The Dim Statement 78
 Writing To and Reading From Variables 78

10.3 Declared vs. Non-Declared Variables 79

 Non-Declared Variables 79
 Explicitly-Declared Variables 79
 Forcing Explicit Variable Declaration 80

10.4 Variables and Data Types 81

 The Variant Data Type 81
 Declaring Multiple Variables 81
 Choosing the Correct Data Type 82

10.5 Converting Variable Data Types 83

 Implicit Data Type Conversion 83
 The Problem with Implicit Type

Conversion
83

 Explicit Data Type Conversion 84
 Checking for Dates and Numbers 84

10.6 The Scope of Variables 85

 Procedure Level Variables 85
 Module Level Variables 86
 Project Level Variables 86

10.7 Constants 87

 Declaring a Constant 87
 The Scope of Constants 87

TABLE OF CONTENTS (4 of 9)

© Copyright 2024 Page 5

11 WORKING WITH DATA Page

11.1 Manipulating Data 88

 The Three Main VBA Data Types 88
 The Basic VBA Operators 88
 Manipulating Values using Functions 89
 Why Some Functions End with a $ Sign 89
 Using Excel’s Worksheet Functions 89

11.2 Working with Numbers 90

 Testing if a Value is a Number 90
 Useful Numeric Functions 90

11.3 Working with Dates 91

 Testing if a Value is a Date 91
 Writing Dates in the VBE 91
 Arithmetic with Dates 91
 Useful Date Functions 92
 Intervals for Date Functions 93
 Setting the First Day of the Week 93
 Formatting Dates 93

11.4 Working with Strings 94

 Concatenating Strings 94
 Character Codes 94
 Special Character Constants 95
 Case Sensitivity 95
 Useful String Functions 96

12 TESTING CONDITIONS Page

12.1 The If Statement 97

 Single-Line If Statements 97
 The Else Clause 97
 Block If Statements 98
 Nested Ifs 99
 The ElseIf Statement 99

12.2 Logical Tests and Operators 100

 Comparison Operators 100
 Logical Tests and Boolean Values 100

12.3 Combining Conditions 101

 The Or Operator 101
 The And Operator 101
 The Xor Operator 101

12.4 Comparing Strings 102

 Testing if Two Strings are Equal 102
 Converting the Case of Text 102
 Making All Text Comparisons Case-

Insensitive
102

 Relative Comparisons with Strings 102
 The Like Operator and Wildcards 103

12.5 Conditional Functions 104

 The IIf Function 104
 The Switch Function 104

12.6 The Select Case Statement 105

 A Basic Select Case Statement 105
 Testing Multiple Values 105
 Testing a Range of Values 105

13 FOR NEXT LOOPS Page

13.1 The For Next Loop 106

 Looping a Set Number of Times 106
 The Step Statement 107
 Exiting from a For Next Loop 107
 Nesting For Next Loops 108
 Looping a Variable Number of Times 108

14 CONDITIONAL LOOPS Page

14.1 The Do Loop 109

 Exiting from a Do Loop 109

14.2 Do Until Loops 110

 Writing a Do Until Loop 110
 The Loop Until Statement 110
 Breaking Out of a Loop 110

14.3 Do While Loops 111

 Writing a Do While Loop 111
 The Loop While Statement 111

TABLE OF CONTENTS (5 of 9)

© Copyright 2024 Page 6

15 HOW VBA WORKS Page

15.1 Object Oriented Programming 112

 The Building Blocks of an Object
Oriented Language

112

15.2 Objects 113

 Referring to Objects by Name 113
 Referring to Objects by Index Number 113
 Qualifying References to Objects 114
 Using Keywords to Reference Objects 114
 Using Object Codenames 115
 Using Object Variables 115

15.3 Collections 116

 Referring to Collections 116

15.4 Methods 117

 Applying Methods to Objects 117
 Passing Arguments to Methods 117
 Returning Values and References from

Methods
118

 When to use Parentheses 118

15.5 Properties 119

 Writing to a Property 119
 Read-Only Properties 119
 Property Data Types 119
 Reading from a Property 120
 Properties and Parameters 120

15.6 Getting Help in VBA 121

 The Object Browser 121
 Context Sensitive Help 122
 Recording a Macro 122

16 FOR EACH LOOPS Page

16.1 Looping Through Collections 123

 The For Each Loop 123
 A Basic Example 123

16.2 Looping Over Worksheets, Charts and
Sheets

124

 Protecting all Worksheets 124
 Excluding Worksheets 124
 Looping Through Chart Sheets 125
 Looping Through All Sheets 125
 Looping Through Objects on a Sheet 125

16.3 Looping Over the Workbooks
Collection

126

 Processing all Open Workbooks 126

16.4 Looping Over a Collection of Range
Objects

127

 Specifying the Range to Loop Over 127
 Looping Through a Column of Data 127

16.5 Nesting For Each Loops 128

 Looping Over Shapes on All Worksheets 128
 Looping Through Sheets in All Open

Workbooks
128

17 MODULAR CODE AND FUNCTIONS Page

17.1 Modular Code 129

 Our Example 129

17.2 Breaking a Procedure into Parts 130

 Creating Module Level Variables 130
 Getting Input from the User 130
 Retrieving the Related Values 131
 Building and Showing a Message 131
 Putting it all Together 131

17.3 Procedures and Parameters 132

 Our Example 132
 Defining Parameters 132
 Calling a Procedure which has

Parameters
133

 Optional Parameters 133
 Assigning Default Values to Parameters 134
 Testing for Missing Arguments 134

17.4 Writing Functions 135

 Returning a Value from a Function 135
 Returning a Reference from a Function 135
 Calling a Function 136
 Using Functions in a Worksheet 136
 Defining Function Parameters 136

TABLE OF CONTENTS (6 of 9)

© Copyright 2024 Page 7

18 DEBUGGING Page

18.1 Debugging Code 137

 The Debug Toolbar 137

18.2 Running Code 138

 Running a Procedure from Start to End 138
 Running a Procedure in Break Mode 138
 Stepping Through Code 139
 Changing the Next Instruction 139
 Editing Code in Break Mode 139

18.3 Debugging Modular Code 140

 Viewing the Definition of a Procedure 140
 Stepping Over a Procedure Call 140

18.4 Breakpoints 141

 Setting and Removing Breakpoints 141
 The Stop Statement 141
 Breaking Conditionally 141

18.5 The Immediate Window 142

 Executing Instructions in the Immediate
Window

142

 Asking Questions in the Immediate
Window

142

 Printing to the Immediate Window 142

18.6 The Locals Window 143

 Observing Variables 143

18.7 The Watch Window 144

 Adding an Expression to Watch 144
 Types of Watch 144
 Adding a Quick Watch 145
 Editing and Removing Watches 145

18.8 The Call Stack 146

 Displaying the Call Stack 146
 Using the Call Stack 146

19 HANDLING ERRORS Page

19.1 Run-Time Errors in VBA 147

19.2 Error Handling in VBA 148

 Identifying Potential Run-Time Errors 148
 The On Error Statement 148

19.3 Using the On Error Statement 149

 Ignoring Run-Time Errors 149
 Disabling an Error Handler 149

19.4 Creating a Custom Error Handler 150

 Redirecting Your Code 150
 Writing the Error-Handling Section 150
 Exiting a Procedure before the Error-

Handling Code
151

 The Complete Example 151

19.5 Resuming After an Error 152

 Resuming at the Original Line 152
 Resuming at the Next Line 152
 Resuming at a Specified Line 153
 Why use Resume and Not GoTo? 153

19.6 The Err Object 154

 Getting the Error Number and
Description

154

 A Catch-All Approach to Error-Handling 154

TABLE OF CONTENTS (7 of 9)

© Copyright 2024 Page 8

20 EVENTS Page

20.1 Event Handlers 155

 Objects Which Have Events 155
 Event Procedures vs. Normal Procedures 155

20.2 Creating a Simple Event Handler 156

 Accessing the Object’s Code 156
 Choosing the Event 156
 Writing the Code 157
 Triggering the Event 157

20.3 Workbook Events 158

 The Before Close Event 158
 The Before Save Event 159
 The Before Print Event 159
 The New Sheet Event 160
 New Chart 160

20.4 Worksheet Events 161

 The Selection Change Event 161
 The Change Event 162
 Checking if the Target is Within a

Specific Range
162

20.5 ActiveX Controls 163

 Drawing ActiveX Controls 163
 Changing Properties of the Control 163
 Adding Code to the Control’s Events 164
 Prevent Controls from Taking the Focus 164

21 CREATING USER FORMS Page

21.1 User Forms 165

 Creating a Working Form 165
 Our Example 165

21.2 Creating a User Form 166

 Inserting a User Form into a Project 166
 Switching Between Form Views 167
 Removing Forms 167

21.3 Form Properties 168

 Changing the Properties of a Form 168
 Some Common Form Properties 168
 Choosing Colours 169
 Setting Font Properties 169

21.4 Form Controls 170

 The Toolbox 170
 Drawing a Control on a Form 170

21.5 Manipulating Controls 171

 Selecting a Control 171
 Selecting Multiple Controls 171
 Resizing Controls 172
 Moving Controls 172
 Deleting Controls 172
 Copying and Pasting Controls 172

21.6 Laying Out Controls 173

 The Form Grid 173
 The UserForm Toolbar 173

21.7 Grouping Controls 174

 Grouping a Set of Controls 174
 Using Frames to Group Controls 174

21.8 Control Properties 175

 Naming Controls 175
 Naming Conventions for Controls 175
 Size and Position Properties 176
 Formatting Properties 176

22 RUNNING USER FORMS Page

22.1 Running a Form 177

 Choosing to Run a Form 177
 Closing a Running Form 177

22.2 Navigating a Form 178

 Tab Order 178
 Accelerator Keys 179
 Keyboard Shortcuts 179
 The Default and Cancel Buttons 180

TABLE OF CONTENTS (8 of 9)

© Copyright 2024 Page 9

23 ADDING CODE TO FORMS Page

23.1 Making Forms Work 181

 Our Example 181

23.2 Running User Forms 182

 Running a Form as a Developer 182
 Running a Form as a User 182

23.3 Adding Code to a Form 183

 Viewing a Form’s Code 183

23.4 Referring to Forms and Controls 184

 Referring to a Form 184
 The UserForms Collection 184
 Looping Over the UserForms Collection 185
 Referring to Controls on a Form 185
 Looping Over the Controls Collection 185

23.5 Form and Control Events 186

 Initialising a Form 186
 Clicking the Cancel Button 186
 Clicking the Add to List Button 187
 Writing Modular Code in Forms 187

23.6 Validating User Inputs 188

 The Data Events of a Text Box 188
 Deciding on Your Validation Rules 188
 Creating Basic Validation Code 189
 Selecting the Text in a Text Box 189
 Ideas for Less-Intrusive Validation 190
 Resetting the Formatting Properties 190
 Using Hidden Labels 190
 Validation at the Form Level 191
 Setting the Focus to a Control 191
 Looping over Controls 192
 Validating Every Text Box in One Pass 192

24 ADVANCED FORM CONTROLS Page

24.1 Beyond the Basics 193

 The Advanced Controls Available 193

24.2 Frames 194

 Drawing Frames and Controls 194
 Looping Through Controls in a Frame 194

24.3 Combo Box and List Box Controls 195

 Setting the Row Source 195
 The List Property 196
 Adding Items Individually 196
 Removing and Clearing Items 197
 Referring to the Selected Item 197
 Changing the List Style 198
 Restricting Choices in a Combo Box 198
 Allowing Multiple Selections in a List Box 198
 Referring to Multiple Selected Items 199
 Working with Multiple Columns 199

24.4 Option Buttons 200

 Grouping Option Buttons 200
 Framing Option Buttons 200
 Setting a Default Option for a Group 201
 Using the Value of an Option Button 201
 The Click Event 201

24.5 Check Boxes and Toggle Buttons 202

 Check Box and Toggle Button Values 202
 The Click Event 202

24.6 Spin Buttons and Scroll Bars 203

 Drawing Spin Buttons and Scroll Bars 203
 Scrolling Properties 203
 The Value Property 203
 The Change Event 204
 The SpinUp and SpinDown Events 204

24.7 MultiPage Controls 205

 Selecting Parts of a MultiPage Control 205
 Working with Pages 205
 The Index and Value Properties 206
 Looping Through Pages and Controls 206

25 ADDITIONAL FORM CONTROLS Page

25.1 Additional Form Controls 207

 Adding Items to the Toolbox 207
 Organising the Toolbox 207

25.2 Examples of Extra Controls 208

 The Date and Time Picker 208
 The RefEdit Control 209
 Progress Bars 209

TABLE OF CONTENTS (9 of 9)

© Copyright 2024 Page 10

26 CONTROLLING OTHER
APPLICATIONS

Page

26.1 Referencing Object Libraries 210

 Setting a Reference to an Object Library 210
 The Default References 211
 References and the Object Browser 211
 Microsoft Office Version Numbers 211

26.2 An Example for Word 212

 Setting a Reference to the Word Object
Library

212

 Declaring a Variable for Word 212
 Creating a New Instance of Word 213
 Showing and Activating Word 213
 Creating a New Document 214
 Writing and Formatting Text in Word 214
 Copying from Excel to Word 214
 Saving the Document and Closing Word 215
 The Complete Example 215

26.3 An Example for PowerPoint 216

 Setting a Reference to the PowerPoint
Object Library

216

 Opening PowerPoint and Creating a
Presentation

216

 Creating a Title Slide 216
 Copying from Excel to PowerPoint 217
 Moving and Resizing PowerPoint Objects 217
 Saving the Presentation and Closing

PowerPoint
218

 The Complete Example 218

26.4 An Example for Outlook 219

 Setting a Reference to the Outlook
Object Library

219

 The Complete Example 219

26.5 Controlling Applications without
References

220

 The CreateObject Function 220
 Using Object Variables 220
 Converting Constants to Numbers 221

27 CRIB SHEET Page

27.1 VBA Reference 222

 Creating Procedures 222
 Selecting and Activating Things 222
 Selecting a Range Relatively 223
 Messages and Inputs 223
 Declaring Variables 224
 Conditional Statements 225
 Looping 226

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 11

CHAPTER 1 - THE VISUAL BASIC EDITOR

1.1 The Visual Basic Editor

To write any Visual Basic for Applications (VBA) code you’ll need to use the Visual Basic Editor
(VBE). This chapter explains how to set up the VBE to make writing code as simple as possible.

Displaying the Developer Ribbon Tab

Although you can use the VBE without it, the Developer ribbon tab contains some useful tools for
working with your VBA code. To display the Developer tab:

Opening the VB Editor

Ribbon KeyboardYou can open the VBE using one
of these options:

Developer | Visual Basic +

When you want to switch back to Microsoft Excel, you can do so by pressing + again.
Alternatively, you can use one of the methods shown below:

Alt F11

Alt F11

All of the Microsoft Office applications share the same VBE. This means that if you
change any settings in one application those changes will be inherited by the other
applications.

Wise
Owl’s
Hint

a) Right-click any existing ribbon tab
and choose this option.

b) On the dialog box which appears,
check this box and click .

c) Click here to select
the Developer tab
and see the extra
tools to which you
now have access.

You can use the Windows task
bar to select the Excel workbook
that you want to see. You can
also just click this button on the
VBE toolbar.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 12

1.2 The VBE Screen

When you first open the VBE you should find that the default layout of the screen resembles the
diagram shown below:

Opening and Closing Windows

You can close any window in the VBE to remove it from the screen.

You can use the View menu to display any window that you’ve closed down, and also to view the
other available windows.

Like any old-fashioned Office
application, you’ll find a menu
and toolbar at the top of the
screen.

The VBE contains a variety of
windows that you can display.
One of the default windows is
the Project Explorer, in which
you’ll see a list of all the open
Excel VBA projects.

The other window that should
be visible by default is called
the Properties window. This
displays the properties of any
object that you have selected.

The main part of the screen
will be empty. Eventually, this
is where you’ll be writing all of
your code.

Simply click the cross in the
top right hand corner of any
window to close it down.

Click the View menu to see
the list of windows that you
can display.

Click the name of a window
to make it appear.

Some windows can also be
displayed with a keyboard
shortcut.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 13

Repositioning Windows

You don’t have to accept the default position of the VBE windows. To move a window around you
can simply click and drag in the title bar of the window.

Docking Windows

Returning a window to its original position can be incredibly fiddly. The basic process involves
dragging a window towards one of the edges of the screen in order to dock it.

You can check whether an individual window is dockable
by right-clicking somewhere inside it.

a) Start by clicking and
dragging the title bar
of the window that
you want to move.

b) Drag the window until
the border turns thick
and then release the
mouse button.

c) The window should
now be repositioned.

a) Click and drag the title bar of
the window towards the edge
of the screen.

b) When the border of the window
changes from thick to thin you
can release the mouse button
to dock the window.

a) Right-click somewhere inside the
window to display a context menu.

b) Ensure that there is a check next
to the Dockable option. You can
click the Dockable option to add a
check if there isn’t one already.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 14

1.3 The Main VBE Windows

You’ll find that some of the VBE windows become more useful as you gain experience. There are
also some windows which you’ll need to learn to use early on in your VBA career.

The Project Explorer

The Project Explorer window displays a list of all of your open VBA projects, as well as any items
contained within these projects.

The Properties Window

The Properties window shows the attributes of any object that you have selected.

You can also display the Properties window within Excel using a tool on the
Developer ribbon tab. Take care though: if you close the window in Excel it will
also be closed in the VB Editor.

Wise
Owl’s
Hint

Each Excel workbook has its own VBA project which is displayed in the Project
Explorer. In this example we have two workbooks and their corresponding VBA
projects open.

A VBA project can contain several different
types of item. You’ll learn about most of them
in the rest of this manual.

Click the yellow folder to change how items
are displayed: either organised into different
folders, or displayed in a single list.

You can collapse and expand the items in a
project or a folder by clicking the + and –
symbols.

You can use this drop down list at the top of
the Properties window to select a different
object.

You can display the list of properties either
alphabetically or categorised by clicking the
tabs at the top of the Properties window.

Click this tool on the Developer tab to
show the Properties window in Excel.

Chapter 1 - The Visual Basic Editor

© Copyright 2024 Page 15

1.4 VBE Settings

The VBE has numerous settings that you can alter to suit your preferences when writing code.

The Options Dialog Box

To display the Options dialog box, from the menu select: Tools | Options…

Changing Font Formatting Options

The Editor Format tab of the Options dialog box has settings that allow you to change the
appearance of your code.

The default tab you’ll see is the Editor tab.
The options here control the behaviour of the
VBE as you’re writing code.

The options shown in this diagram represent
the default settings you’ll see when you first
install Excel.

Having these three boxes checked ensures
that you’ll see as much help as possible as
you write your code.

Click this button to open a webpage which
describes what each of the options on this
tab of the dialog box does.

The VBE displays different items in your
code using different formats. This list shows
you the different types of text that you’ll see
when you’re writing code.

Clicking an item in the list reveals the default
formatting for that type of code. Here we’ve
selected Syntax Error Text which appears in
a bright red font in the VBE.

If you don’t like the default formatting for any
type of code you can change it by selecting
different colours, fonts and sizes for the text.

This box shows what the selected text type
will look like with your current options. Feel
free to click if it looks horrible!

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 16

CHAPTER 2 - WRITING SIMPLE VBA CODE

This chapter introduces you to the basics of writing VBA code. You won’t create a world-changing
application here, but you will learn the fundamental techniques you’ll need to start writing one.

2.1 Modules

Before you can start writing code you’ll need somewhere to put it. You can write VBA code in a
variety of places in a project but the most common location is in a module.

Inserting a Module

You can insert a module into a project by selecting Insert | Module from the menu. You can also
do this using the Project Explorer, as shown in the diagram below:

Your new module will appear in the Modules folder of your project and will automatically open in
the main window of the VBE.

a) Right-click in the Project Explorer somewhere
within the project in which you want to insert
your new module.

b) From the context menu which appears, select
Insert | Module

You’ll see your new module listed in
the Modules folder of the project.

The module will also be displayed in
the main area of the VBE.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 17

Opening and Closing Modules

When you insert a module it automatically opens. You can close and reopen modules easily, as
shown below:

Renaming Modules

To rename a module you change its Name property in the Properties window.

Naming Rules in VBA

The rules for module names apply to the names of everything to which you can assign a name in
VBA. These rules are summarised in the table below:

Rules for naming things in VBA

The first character must be a letter.

The name cannot contain a space, or any of the following characters . ! @ $ & #

The maximum length of a name is 255 characters.

You can’t have duplicates of a name in the same scope. So, for example, you can’t have two modules in the
same project with the same name, but you can have modules in separate projects with the same name.

It’s best to avoid using the names of existing VBA things. For example, don’t call a module something like
Workbook or Worksheet.

You can click the cross in the top
right corner of a module to close
it.

Double-click the module in the
Project Explorer to open it again.

Select the module in the Project Explorer
and then click into the Name property in
the Properties window.

Type in a new name for the module and
then press . The module’s new name
will appear in the Project Explorer.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 18

Naming Conventions

As well as the rules that you must follow for naming things in VBA, there are some conventions
that you could choose to adopt in order to make your names consistent.

Convention Description Example

Capital Letters Use a capital letter at the start of each word in the name. This is
called Pascal Case or, sometimes, Camel Case.

MyFirstModule

Underscores Use an underscore instead of a space to separate words. My_First_Module

Removing Modules

You can delete a module from a project by choosing to remove it.

Exporting Modules

You can export a module to a file which can be moved around independently of a VBA project.

Right-click on a module and choose to Remove it. Click
No on the message that appears, unless you do want to
export the module first.

a) Right-click on the
module and choose
the Export File…
option.

b) Choose a location in
which to save your
exported module and
click the Save button.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 19

Importing Modules

You can’t run or edit the code in an exported module. First, you must import it into a VBA project.

Copying Modules to Other Projects

If you have more than one project open at the same time it’s easy to copy modules between them.

If the destination project already contains a module with the same name, the one
that you’re copying will be renamed automatically to avoid a conflict.

Wise
Owl’s
Hint

a) Right click the mouse in the
Project Explorer and click
Import File…

b) Double-click on the module
you want to import to add it
to the VBA project.

a) Click and drag the module
from its original project into
any other project listed in
the Project Explorer.

b) Release the mouse button
to drop the module into its
new project. A copy of the
module will be created for
you automatically.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 20

2.2 Writing Procedures

Procedure is a generic term used to describe a variety of different programs that you can write in
VBA. This section explains how to start writing the simplest type of procedure; a subroutine.

Types of VBA Procedure

There are three types of procedure you can write in VBA: subroutines; functions; and properties.
The table below summarises what each one is, and shows a fairly useless example of each.

Procedure Description Example

Subroutine This is the simplest type of procedure you can
write. A subroutine contains a list of
instructions for the program to carry out in a
specific order. Subroutines are commonly
referred to as subs or macros.

Function A function is similar to a subroutine in that it
contains a list of instructions to be executed
in a particular order. The main thing which
distinguishes this type of procedure is that it
can also return some kind of value or
reference.

Property Properties are written primarily inside class
modules. In basic terms, a property is an
attribute of an object. There are three
different forms of the property statement: Let,
Get and Set.

Inserting Procedures

The easiest way to begin a procedure is simply to start typing in your module. If you’d like a little
help you can also insert a procedure from the menu by choosing Insert | Procedure…

a) Give the procedure a name. Compound names like this one
are ideal, as they describe what the procedure does and are
unlikely to be confused with existing Excel VBA keywords.

b) Choose which type of procedure you want to create. In this
chapter we’re sticking with subroutines.

c) Choose the scope of your procedure. Public procedures can
be called from any module in the project, while private ones
can only be called in the module in which they are written.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 21

Starting a Subroutine

Although inserting a procedure can help to remind you of the syntax, most of the time you’ll find it
easier just to type directly into your module. The diagram below shows you how to get started.

If, on the other hand, you’ve done something wrong, the VB Editor should make it immediately
apparent by displaying an error message.

When you’ve successfully created the procedure you can start writing out the instructions to make
it do something!

a) Start by typing the word sub followed by a space and the name that you
want to give your procedure.

b) Once you’ve typed in a name for the sub, simply press on the
keyboard.

c) Several things should then happen:
• The letter s in the word sub will be capitalised.
• The word Sub turns blue.
• Parentheses appear at the end of the procedure’s name.
• The words End Sub appear.

Here we’re trying to create a
sub with a space in its name.

The VB Editor makes it obvious that you’ve done something wrong
by highlighting the text in red and, by default, displaying an error
message.

The error message is often difficult to interpret, but in this case we
know exactly what we’ve done wrong. Click on the message
so that you can remove the space and fix the problem.

To make your procedure actually do
something you just need to write the
instructions in between the Sub and
End Sub lines.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 22

Switching off Syntax Error Messages

When you make a mistake it can be annoying to have to click on the (often useless) error
message before you can fix the problem. Fortunately, you can turn these messages off.

Now when you make a syntax error the line of code will be highlighted in red, but you’ll no longer
have to clear the error message before you go about fixing the problem.

Setting the Scope of a Procedure

The scope of a procedure determines its availability to other modules in your project. Unless you
specify otherwise, all procedures that you create are public.

OK

You can write the word Public at the start of a procedure to
explicitly show that it is public, but as this is the default you
can happily omit this word.

Public procedures are available to all of the modules in a
project. If you want to restrict the scope of a procedure to a
single module, use the word Private instead.

From the menu choose Tools |
Options… and on the Editor
tab of the dialog box, uncheck
this box.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 23

2.3 Writing Neat Code

Taking the time to write neat code can be a difficult habit to get into, but you’ll thank yourself for
doing it later on! Neatly-written code is quicker and easier to read and debug.

Commenting Your Code

Comments are a useful way to help other people (or future you) interpret the code you’ve written.
You can begin a comment by typing an apostrophe followed by your comment text.

Old-school (or just old) programmers may be interested to learn that you can also add comments
using the Rem statement.

You can write comments on separate lines
like this one.

You can also write comments at the end of
a line of code.

These two procedures perform exactly the same
task at exactly the same speed. The one on the
left takes slightly longer to write due to the added
comments and careful indenting of lines, but if you
had to solve an issue with the code the one below
is much more difficult to work with.

Rem is short for remark and behaves just like
the apostrophe except that you can’t use it to
add comments at the end of a line of code.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 24

Commenting Out Multiple Lines of Code

Sometimes you’ll want to temporarily remove some lines of code from your procedures. Rather
than deleting them entirely you can simply turn them into comments.

Using Blank Lines and Indenting

As you saw in the screenshot at the start of this section, you can write your procedures in one
continuous wall of text. It’s much better to spend time laying out your code neatly however.

Within a procedure you should use blank lines at your discretion to make the code as easy to read
as possible. The conventions for indenting code depend on which statements you’re writing.

a) Start by selecting at least
part of each line that you
want to comment out.

b) Click this button which you can
find on the Edit toolbar. If you
can’t see this toolbar, from the
menu select View | Toolbars |
Edit

c) All of the selected lines will be
turned into comments.

d) To uncomment the
lines, select them
and click this tool
on the toolbar.

After typing the name of a new procedure press twice to create a
blank line between the procedure name and the start of the code.

Press the key to indent the code within the procedure by one level.

Some VBA statements have a corresponding
end statement, for example Sub always has a
matching End Sub.

All of the code written between the beginning
and end of a statement such as Sub and End
Sub should be indented one level.

You should continue to indent code each time
you begin another statement with a beginning
and end, such as If and End If.

The line at the end of a statement should be
written at the same indent level as the start of
the statement. You can press or

+ to outdent code.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 25

Indenting Multiple Lines

You can indent multiple lines of code at the same time

Changing Indenting Settings

The default width of a tab space in the VB Editor is equivalent to four spaces. You can change this
setting by choosing Tools | Options… from the menu.

The Continuation Character

As you begin writing longer, more complex instructions you’ll often find that your screen isn’t wide
enough to display the code without scrolling left and right.

You can break one line of code into multiple separate lines using the continuation character. Each
time you want to split an instruction onto a new line, type in a space followed by an underscore.

On the Editor tab of the dialog box you can
type a number into this box to change the
width of a tab space in the VB Editor.

When your code extends past the width of a single screen you can use the scroll bar to move left and right to see it all.

To begin a new line in the middle of a single
instruction you must type in a space followed
by an underscore before pressing .

You can’t have blank lines between the lines
which make up the complete instruction.

Select at least a part of each line
that you want to indent and then
press to indent them. You
can outdent the selected lines by
pressing and .

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 26

2.4 Writing Simple VBA Instructions

This section is designed as a brief introduction to how the VBA language works to help you get
started. We’ll discuss these basic ideas in much more detail in a later chapter.

Objects

VBA is based around the concept of objects. Some of the main objects you’ll encounter are ones
that you’ll be familiar with from working with Excel, such as workbooks, worksheets and cells.

Methods and Properties

In order to manipulate an object you can either apply one of its methods, or modify one of its
properties.

It may seem complicated at first but the rules of grammar in VBA are relatively
simple and, more importantly, consistent. Give it some time and you’ll soon be
speaking VBA like a pro!

Wise
Owl’s
Hint

Basic VBA sentence structure follows a Thing.Action pattern, where the Thing is
the object that you want to manipulate and the Action is what you want to do to it.
The Thing is always separated from the Action using a full stop.

Wise
Owl’s
Hint

Generally speaking, whenever you want to perform an action in
VBA, you begin the instruction by referring to an object.

After referencing the object you enter a full stop and then use
another VBA keyword to do something to the object. The code
shown in this example activates a workbook, then selects a
worksheet, and finally changes the value of a range object.

The name of a method is usually a verb and represents some
kind of action that will be performed on an object. Different
objects have different methods that can be applied to them.
Activate and Select are both examples of methods.

Properties are attributes of objects whose value you can often
change. To assign a value to a property you make it equal to
something. Here we’re assigning the word Something to the
Value property of a Range object.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 27

2.5 Tools to Help with Writing Code

There are several features built in to the VBE that are designed to provide you with help as you
write your code.

Choosing Which Tools are Enabled

To choose which tools are enabled, from the menu select Tools | Options…

Using IntelliSense to Write Code Faster

IntelliSense is a useful feature which attempts to present you with a list of valid options as you
write your code. This happens automatically if you’ve checked the Auto List Members option.

You can also attempt to force the IntelliSense list to appear using a keyboard shortcut. Pressing
 + or + will achieve this.Ctrl J Ctrl Spacebar

Beware that not all objects display an IntelliSense list when you type in a full stop
immediately after referencing them. A notable example of this is the worksheet
object.

Wise
Owl’s
Hint

On the Editor tab of the dialog
box, checking these three
boxes ensures that you’ll
receive the maximum amount
of help as you write your code.
If any of these features annoys
you, simply uncheck the box to
disable them.

Checking Auto List Members ensures that the
IntelliSense list will appear automatically.

Auto Quick Info determines whether tooltips
will appear to help you.

Auto Data Tips means you see tooltips when
hovering the mouse over certain bits of code.

After referencing an object you can type
a full stop to make the IntelliSense list
appear.

The IntelliSense list displays all of the
methods and properties for the class of
object that you’ve referenced.

You can highlight an item in the list either by scrolling
through it using the cursor keys or by starting to type the
name of the method or property that you want to use.

To type in the highlighted word you can either press
 to remain on the same line, or to move to

the next line.

You can even make the
IntelliSense list appear at the
start of a blank line using one
of the two keyboard shortcuts
listed above.

Chapter 2 - Writing Simple VBA Code

© Copyright 2024 Page 28

Using Tooltips

Tooltips provide you with information on the parameters of VBA keywords. These tooltips will
appear automatically as long as you have the Auto Quick Info option checked.

If a tooltip disappears and you want to redisplay it, press + (that’s a capital i rather than a
lower case L) on the keyboard.

Viewing Data Tips

Data tips only appear while you’re stepping through your code – a technique that you’ll learn about
in a later chapter. To see a data tip simply hover the mouse cursor over a keyword.

Ctrl I

Tooltips will appear after you type in a keyword followed either
by an open parenthesis or a space.

The tooltip shows the parameter list for the particular
keyword you have typed in. You can see the currently
active parameter highlighted in bold text.

Optional parameters are displayed
enclosed in a set of square brackets,
while compulsory parameters aren’t.

The yellow arrow indicates that you’re stepping
through a procedure – more on this later.

Hover the mouse cursor over a keyword to see
a data tip appear with more information.

With the text cursor positioned on the same line, press + to display
the tooltip for the command you’re writing.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

WHAT WE DO

ONLINE
TRAINING

MANCHESTER
OR LONDON

AT YOUR
OFFICE

BESPOKE
CONSULTANCY

O
F
F
I
C

E

3
6

5

Microsoft

Excel
 ✓ ✓ ✓ ✓

VBA

macros
 ✓ ✓ ✓ ✓

Office

Scripts
 ✓ ✓

Microsoft

Access
 ✓

P
O

W
E
R

P
L
A

T
F
O

R
M

Power BI

and DAX
 ✓ ✓ ✓ ✓

Power

Apps
 ✓ ✓

Power

Automate
 ✓ ✓ ✓ ✓

S
Q

L

S
E
R

V
E
R

Reporting

Services
 ✓ ✓ ✓ ✓

Report

Builder
 ✓ ✓ ✓

Integration

Services
 ✓ ✓ ✓ ✓

Analysis

Services
 ✓ ✓

 C
O

D
I
N

G

L
A

N
G

U
A

G
E
S

SQL ✓ ✓ ✓ ✓

Visual C# ✓ ✓ ✓ ✓

Python ✓ ✓ ✓ ✓

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

