
DAX for Power BI

Sample manual - first two chapters

Manual 1293 - 126 pages –

TABLE OF CONTENTS (1 of 4)

© Copyright 2024 Page 2

1 INTRODUCTION TO DAX IN POWER
BI

Page

1.1 DAX in Power BI 6

 How DAX is Used 1 – Calculated Columns 6
 How DAX is Used 2 – Measures 6
 How DAX is Used 3 – Calculated Tables 7
 Choosing the Type of Calculation 7
 Where Else is DAX Used? 7

1.2 The Construct-a-Creature Database 8

 The Tables and Relationships 8

1.3 Getting Help with DAX 9

 Getting Help within Power BI 9
 Other Sources of Help 9

2 BASIC CALCULATED COLUMNS Page

2.1 Calculated Columns 10

 Key Features of Calculated Columns 10
 Creating a Calculated Column 10
 Entering a Formula 11
 Calculated Column Properties 12
 Using Calculated Columns in Visuals 12

2.2 Referencing Columns and Tables 13

 Qualifying Column Names 13
 Table Names 13
 Referencing Columns in Other Tables 14
 The Related Function 14

2.3 Editing DAX Code 15

 Multiple Lines and Indenting 15
 Comments 16
 Keyboard Shortcuts 16

3 WORKING WITH DATA TYPES Page

3.1 DAX Data Types 17

 Viewing a Column’s Data Type 17

3.2 Working with Numbers 18

 Basic Arithmetic 18
 Controlling the Calculation Order 18
 Safely Dividing Numbers 19
 Numeric Functions 20

3.3 Working with Text 21

 Writing Text in Calculations 21
 Concatenating Text 21

3.4 Text Functions 22

 Finding and Extracting Text 22
 Replacing Text 22
 Generating Text 23
 Converting and Formatting Text 23

3.5 Working with Dates 24

 Entering Date and Time Values 24
 Returning the Current Date and Time 24
 Calculating Date and Time Values 25
 Calculating the Difference Between Dates 25
 Extracting Date Parts 26
 Formatting Dates 26

4 CONDITIONAL FUNCTIONS Page

4.1 The IF Function 27

 Testing a Single Condition 27
 Comparison Operators 27
 The IN Operator 27
 Nesting IF Functions 28
 Combining Logical Tests 28
 The NOT Operator 28

4.2 Working with Blanks 29

 Producing a Blank 29
 Blank Arithmetic 29
 Testing for Blanks 29
 The COALESCE Function 30

4.3 Testing for Errors 31

 The ISERROR and IFERROR Functions 31
 Avoiding Error Functions 31

4.4 The SWITCH Function 32

 A Simple SWITCH Function 32
 Logical Tests in a SWITCH Function 32

TABLE OF CONTENTS (2 of 4)

© Copyright 2024 Page 3

5 BASIC MEASURES Page

5.1 Introduction to Measures 33

 Measures vs. Calculated Columns 33
 Implicit Measures 33

5.2 Creating a Measure 34

 Adding a Measure to a Table 34
 Formatting Measures 35
 Displaying a Measure in a Visual 35
 Referencing Measures 36

5.3 Filter Context 37

 What is Filter Context? 37
 How DAX Applies Filter Context 38

5.4 Measures Tables 39

 Creating a Separate Measures Table 39
 Moving Measures 40

5.5 Quick Measures 41

 Creating a Quick Measure 41
 Editing a Quick Measure 42
 Using a Quick Measure 42

6 AGGREGATION FUNCTIONS Page

6.1 Aggregating Column Values 43

 Basic Aggregation Functions 43
 Functions for Counting 44
 Dealing with Boolean Values 44

6.2 Aggregating Expressions 45

 The AggregateX Functions 45

6.3 Iterators and Row Context 46

 A Reminder of Filter Context 46
 Row Context in Iterator Functions 47
 The Final Result 47
 How to Spot Iterators 47

7 THE CALCULATE FUNCTION Page

7.1 Introducing the CALCULATE Function 48

 Expressions in the CALCULATE Function 48

7.2 Adding New Filters 49

 Basic Filter Expressions 49
 Adding Multiple Filters 50
 Filter Arguments and Filter Context 50
 Multiple Columns in Filter Arguments 51

7.3 Replacing Filters 52

 Replacing an Existing Filter 52
 Comparing Differently Filtered Measures 53
 Dealing with Blank Values 53

7.4 Keeping Filters 54

 The Problem with the Default Behaviour 54
 The KEEPFILTERS Function 55
 Using the VALUES Function 55

7.5 Removing Filters 56

 Removing Every Filter 56
 Using the ALL Function 57
 Comparing Filtered and Unfiltered Values 57
 Removing Filters from Specific Fields 58
 An Issue with Sort-By Fields 59
 Removing Filters from a Specific Table 59

7.6 Special Filter Removal Functions 60

 The ALLEXCEPT Function 60
 The ALLSELECTED Function 61

8 VARIABLES Page

8.1 Introduction to Variables 62

 Using Variables in Measures 62

8.2 How Variables are Evaluated 63

 Lazy Evaluation 63
 DAX Variables are Constants 63

8.3 Debugging with Variables 64

 Returning Different Variables 64

8.4 Nesting Variables 65

 Variables in Functions 65
 Variable Scope 66

TABLE OF CONTENTS (3 of 4)

© Copyright 2024 Page 4

9 THE FILTER FUNCTION Page

9.1 Introduction to the FILTER Function 67

 A Basic FILTER Example 67
 Using the CALCULATE Function 67
 How CALCULATE and FILTER are

Related
68

 Using Multiple Filters 68
 Using Variables 68

9.2 FILTER vs. CALCULATE 69

 Referencing Multiple Fields 69
 Using Fields from Different Tables 69
 Referring to Measures 70
 Replacing Filters 71

9.3 The CALCULATETABLE Function 72

 Using CALCULATETABLE 72

10 FILTERS AND RELATIONSHIPS Page

10.1 Relationships and Filter Direction 73

 The Problem with Relationships 73
 Changing the Cross Filter Direction 74
 Solving the Problem using Filters 75

10.2 Cross Filter Direction in Measures 76

 The CROSSFILTER Function 76
 Using Single and Both Filter Directions

Simultaneously
77

 Multiple CROSSFILTER Functions 77

11 CONTEXT TRANSITION Page

11.1 What is Context Transition? 78

 Row and Filter Context 78

11.2 Context Transition in Calculated
Columns

79

 Row Context in Calculated Columns 79
 Performing Context Transition 79
 Implicit Context Transition 80
 The RELATEDTABLE Function 80

11.3 Context Transition in Measures 81

 Row Context in Measures 81
 Context Transition in Measures 82
 The Effect of Filter Context 82
 Removing Filters 83

11.4 Ranking Values 84

 The RANKX Function 84
 Ranking in Calculated Columns 84
 Context Transition in Calculated Columns 85
 Ranking in Measures 85

12 TIME INTELLIGENCE Page

12.1 Introduction to Time Intelligence 86

 Calendar Tables 86
 The Date Column 87
 Referring to Calendar Tables 87

12.2 Time Intelligence Functions 88

 General Time Intelligence Functions 88
 Using the DATEADD Function 88
 How DATEADD Works 89
 Using the DATESINPERIOD Function 89
 Using the Current Date 90
 Using Specific Dates 90

12.3 To Date Calculations 91

 Returning Date Ranges 91
 Calculating Running Totals 91
 Total To Date Functions 92
 Easier Running Total Calculations 92
 Specifying Year End Dates 93
 Calculating Life to Date Values 93

12.4 Next and Previous Periods 94

 Next and Previous Period Functions 94
 Comparing Entire Previous Years 95
 Comparing Parts of Previous Years 96

12.5 Period Start and End Dates 97

 Period Start and End Functions 97
 Start and End Dates 98
 Opening and Closing Balances 99
 First and Last Non-Blank Dates 99
 First and Last Non-Blank Values 100
 Non-Blank Opening Balances 100

12.6 Moving Averages 101

 Calculating a Moving Average 101

TABLE OF CONTENTS (4 of 4)

© Copyright 2024 Page 5

13 CUSTOM CALENDARS Page

13.1 Why use Custom Calendars? 102

 Disabling Automatic Calendars 102

13.2 Creating a Custom Calendar 103

 The CALENDARAUTO and CALENDAR
Functions

103

 Adding Extra Columns 104
 Financial Years 105

13.3 Finishing the Calendar 106

 Marking as a Date Table 106
 Changing Default Aggregations 106
 Setting Sort-By Columns 107
 Creating Hierarchies 107
 Hiding Fields 108
 Creating a Relationship 108

13.4 Using a Custom Calendar 109

 Creating Visuals 109
 Time Intelligence Functions 109

13.5 Multiple Date Fields 110

 Using Multiple Calendars 110
 Using a Single Calendar 111
 Changing the Active Relationship 111
 The USERELATIONSHIP Function 112

13.6 Special Dates 113

14 DYNAMIC MEASURES Page

14.1 Dynamic Labels 114

 Why use Dynamic Labels? 114

14.2 Returning a Single Value 115

 The VALUES Function 115
 Testing for a Single Value 116
 The SELECTEDVALUE Function 116

14.3 Concatenating Values 117

 The CONCATENATEX Function 117
 More Complex Expressions 117

14.4 Filtered Values 118

 Testing for Filtered Values 118
 Testing for Cross Filtered Values 118
 Selecting the Top N Rows 119

14.5 Disconnected Slicers 120

 Creating a Disconnected Table 120
 Creating a Disconnected Slicer 121
 Referencing the Selected Value 121

14.6 Formatting with Measures 122

 Calculating Colours with Measures 122
 Using Measures in Conditional

Formatting
123

 Choosing Colours with Slicers 123

Chapter 1 - Introduction to DAX in Power BI

© Copyright 2024 Page 6

CHAPTER 1 - INTRODUCTION TO DAX IN POWER BI

1.1 DAX in Power BI

In Power BI you can use the DAX (Data Analysis eXpressions) language to create calculated
columns, measures and tables. You can see an example of each below.

How DAX is Used 1 – Calculated Columns

A calculated column is like a formula in an Excel table. The results of a calculated column are stored
in the data model.

As we will see in this manual, a calculated column is evaluated for each row of a table; DAX uses
the row context to access the correct values for each separate calculation.

How DAX is Used 2 – Measures

A measure is a formula which calculates a value when you place it in a visual. The visual provides
a filter context which tells the measure which values it can use in the calculation.

This calculated column
gives the value for each
row of a sales table by
multiplying the price of
an item by the quantity
sold.

This measure multiplies the price
of an item by the quantity sold for
each row of a sales table, then
sums the results.

When we place the measure in a
visual (a matrix in this case) the
measure is calculated for each
data point in the visual.

The filter context controls which
values the measure can access.
This cell gives the total sales
value for products in the Water
environment sold in the South
West region.

Chapter 1 - Introduction to DAX in Power BI

© Copyright 2024 Page 7

How DAX is Used 3 – Calculated Tables

Although most of the tables in your Power BI data model will be created by importing data, you can
also use DAX to calculate tables. It’s common to use this technique to create custom calendars.

Choosing the Type of Calculation

Power BI provides several ways to create calculated columns, measures and tables. One way is to
click the relevant tool on the Home tab of the ribbon while in the Data view.

Where Else is DAX Used?

In addition to Power BI, you can write DAX in the following applications:

Application Description
Power Pivot Power Pivot is an add-in for Excel which allows you to combine data from

multiple sources and present this in a pivot table or chart.

SQL Server Analysis Services
(SSAS) Tabular

SSAS Tabular Model allows you to combine data from lots of different data
sources, apply security to it to control who sees what and then allow
employees of your organisation to share the resulting data model.

This DAX expression creates a
calculated table which contains
a range of dates related to the
sales in our database.

The Calculations group on the Home tab of the ribbon has
a button for each type of DAX calculation.

Select the Data view tool on the left of the Power BI window.

Chapter 1 - Introduction to DAX in Power BI

© Copyright 2024 Page 8

1.2 The Construct-a-Creature Database

This courseware uses data from the (fictitious) Wise Owl subsidiary Construct-a-Creature (a retail
chain loosely modelled on Build-a-Bear, but with a wider range of animals available for purchase).

The Tables and Relationships

You can see the tables and relationships of the database in the diagram below:

There are four tables representing a geographical dimension to do with where sales took place. These tables give
the shopping centre, type of centre, town and region.

There are also four tables representing a product dimension. These give
details of the product sold (for example, a frog is an amphibian which
lives in a fresh water habitat in a watery environment).

The Sales table stores how many
of each product were sold in each
transaction.

Chapter 1 - Introduction to DAX in Power BI

© Copyright 2024 Page 9

1.3 Getting Help with DAX

The amount of help available for DAX both within Power BI and from third parties has increased
dramatically since the product was first released.

Getting Help within Power BI

You’ll see various popups appear to help you as you write DAX in Power BI.

Other Sources of Help

You can find more descriptive help for DAX on a range of websites, as shown in the table below:

Website Description URL
Microsoft DAX
Reference

Microsoft’s official documentation for DAX
functions. It’s somewhat dry but a useful
technical reference.

https://learn.microsoft.com/en-us/dax/

Power BI
Community

A Microsoft forum in which you can post
questions about any aspect of Power BI and
rely on other members to provide answers.

https://community.fabric.microsoft.com/
t5/Microsoft-Power-BI-Community/ct-
p/powerbi

SQLBI A third-party site maintained by Marco Russo
and Alberto Ferrari. The site contains lots of
free resources to help you with DAX.

https://www.sqlbi.com/

DAX Guide A third-party alternative to Microsoft’s DAX
Reference created by the Italians. This site
fleshes out the detail of DAX functions and
provides links to helpful articles which
describe in more detail how the functions
work.

https://dax.guide/

Wise Owl The Wise Owl website contains lots of free
resources including videos, blogs and
exercises to help you with learning DAX.

https://www.wiseowl.co.uk/resources/

When you use a DAX function, a
popup shows you a description of
what it does and which parameters
you need to fill in.

The Intellisense list helps you to
pick functions and column names
to save on typing.

https://learn.microsoft.com/en-us/dax/
https://community.fabric.microsoft.com/t5/Microsoft-Power-BI-Community/ct-p/powerbi
https://community.fabric.microsoft.com/t5/Microsoft-Power-BI-Community/ct-p/powerbi
https://community.fabric.microsoft.com/t5/Microsoft-Power-BI-Community/ct-p/powerbi
https://www.sqlbi.com/
https://dax.guide/
https://www.wiseowl.co.uk/resources/

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 10

CHAPTER 2 - BASIC CALCULATED COLUMNS

2.1 Calculated Columns

A calculated column is a type of calculation you can create using DAX in Power BI. This chapter
shows you the basics of writing DAX using calculated columns.

Key Features of Calculated Columns

You can see some of the key features of calculated columns in the table below:

Feature Description
Created in data tables You create a calculated column in a table in the data model. The calculated

column can refer directly to any column in the same table.

Calculated immediately A calculated column produces its results as soon as you enter it. The values
are updated whenever the data model is refreshed.

Stores data in the model A calculated column stores its results in the data model. Each calculated
column you create increases the storage space required by the model.

Uses row context The expression in a calculated column is evaluated for each row in the table.
The row context provides the expression with access to values on the same
row in the table.

Creating a Calculated Column

You can create a calculated column in any of the three Power BI views but, if you want to see the
results of your calculation, it’s best to select the Data view.

Select the Data view button on the left of the Power
BI window.

You can right-click on any column in the table and
choose New column to add a calculated column.

You can choose New column from the
Table tools or Home tabs of the ribbon
to add a calculated column.

You can right-click the table in the Data
panel and choose New column to add a
calculated column.

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 11

Entering a Formula

After choosing to create a calculated column you can enter your DAX code in the formula bar below
the ribbon. The example below divides one column by another to create a new value:

1) Start by giving the column a sensible name.

2) To reference a column in the same table, simply begin typing the column name.

3) Type in an operator then reference the next column.

4) Press Enter to commit the formula.

Your calculated column will appear in the table in the Data pane with a special symbol to indicate its
status.

Change the text on the left of the
equals sign to rename the column.

As you type, the Intellisense list will filter the
list of matching column and function names.

Highlight the item you want to insert and
press Tab to insert it into the formula.

You can use spaces in a DAX formula to make it more readable.
Here we’ve added spaces around the multiply operator.

You can also click the tick
to commit the formula.

When you complete the formula, DAX calculates
an answer for each row of the table.

This symbol indicates that
the column is a calculated
column.

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 12

Calculated Column Properties

Once you’ve created a calculated column, you can modify it in the same way as any other column
in your data model, as shown in the diagram below.

Using Calculated Columns in Visuals

You can use a calculated column to populate visuals in your report, just as for any other column in
your data model.

You can change the default
aggregation function used
when you add the column to
a visual using this drop-down
list.

You can apply formatting to the column
using these tools.

You can assign a data category to the column
using this drop-down list.

Select the column in the
Data pane. You can then
use the Column tools tab
in the ribbon to modify its
properties.

If the calculation produces
text, you can use it to
populate category fields in a
visual. Here we’ve used a
calculated column called
Centre Size to group the
values in a chart.

You can assign numeric
calculated columns to value
fields in a visual. Here
we’re using the Sale Value
calculated column to create
a sum of sale value.

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 13

2.2 Referencing Columns and Tables

This section shows you various ways to refer to columns and tables in your DAX formulae.

Qualifying Column Names

When you select a column name from the Intellisense list, it will be automatically qualified with the
name of the table to which it belongs. You don’t have to include the table name, however.

Although you don’t always have to include the table name when referencing a column, it makes
sense to do so for the following reasons:

• If you always include the table name you don’t have to remember when it is or isn’t required.

• It allows you to spot when you’re referring to a column as opposed to, say, a measure.

• When a column name exists in multiple tables it makes the reference unambiguous.

Table Names

If the name of a table contains spaces, or it conflicts with another DAX keyword, you must enclose
the table name in single quotes.

You can always enclose a table name in single quotes, even when it isn’t required.Wise
Owl’s
Hint

These two formulae
give the same result.

Sales Table must be enclosed in
single quotes due to the space in
the table name.

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 14

Referencing Columns in Other Tables

In a calculated column you can only directly reference other columns which belong to the same table.
This is a problem when your calculation needs to refer to columns in other tables!

The Related Function

The key to solving the above problem is that the Product and Sales tables have a relationship. This
allows us to use the RELATED function to reference a column in a related table.

You can reference columns from a table at the 1 end of a relationship, regardless of how many steps
it takes. In our model, the Sales table sits at the many end of every relationship:

We’d like to create a calculated column in the
Sales table which multiplies the Quantity by
the ProductionCost in the Product table.

When we reference the ProductionCost
column directly, the formula results in an
error.

We can successfully reference
the ProductionCost column by
using the RELATED function.

A calculated column in
the Sales table can
reference any other
column in the data
model using the
RELATED function.

In the Sales table you
could return the
RegionName with this
formula:

=RELATED(
Region[RegionName]
)

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 15

2.3 Editing DAX Code

Although you can write a DAX formula as a continuous stream of code, there are several things you
can do to make your code more readable.

Multiple Lines and Indenting

You can break a formula onto multiple lines and add tab spaces to make it more readable. You can
use the following keys to add new lines and indenting to a formula:

Key What it does

 Shift + Enter or Alt + Enter Adds a new line, and a tab level if appropriate.

 Tab Indents the highlighted lines one tab space.

 Shift + Tab Outdents the highlighted lines one tab space.

You can see an example of a formula with new lines and indenting in the diagram below:

It’s not important to understand what the code in this section does – instead, focus
on the techniques used to make it more readable.

Wise
Owl’s
Hint

Laying out a formula
like this makes it very
difficult to work with!

When you use a function
(in this case DIVIDE),
open the round brackets
then start a new line and
add a tab space.

Close the brackets for a
function at the same
indent level as the line
on which the brackets
were opened. Use the
vertical grey lines to help
you put the brackets in
the right place.

Each new function that
you use should have its
arguments indented one
extra tab level.

All of the arguments for
a single function should
be at the same tab level.

Use a comma at the end
of a line to separate one
argument from the next.

Chapter 2 - Basic Calculated Columns

© Copyright 2024 Page 16

Comments

You can use comments to annotate your code. You can add a comment at the end of any line after
the = sign in a formula.

Keyboard Shortcuts

You can use a range of keyboard shortcuts to help you edit your DAX code. You can see some of
these in the table below:

Key What it does

 Ctrl + G Goto the specified line number.

 Alt + ↑ / Alt + ↓ Move the line of code up / down.

 Shift + Alt + ↑ / Shift + Alt + ↓ Copy the line of code up / down.

 Ctrl + Shift + \ Jump to the paired bracket.

 Alt + Left mouse click Add a text cursor at the clicked position.

 Ctrl + L Select the line of code.

 Ctrl + Shift + L Select all occurrences of the current selection.

 Ctrl + F2 Select all occurrences of the current word.

 Ctrl + / Comment/uncomment the line of code.

 Ctrl + = / Ctrl + - Zoom in / zoom out.

 Ctrl + Space Bar Show the Intellisense list.

 Ctrl + I Show and hide tooltips.

 Ctrl + J Expand and collapse the formula bar.

You can type // to begin adding
a comment, followed by the
comment text.

You can also begin a comment
using -- rather than //.

Start a multi-line comment with
/* and end it with */ as shown
here.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

WHAT WE DO

ONLINE
TRAINING

MANCHESTER
OR LONDON

AT YOUR
OFFICE

BESPOKE
CONSULTANCY

O
F
F
I
C

E

3
6

5

Microsoft

Excel
 ✓ ✓ ✓ ✓

VBA

macros
 ✓ ✓ ✓ ✓

Office

Scripts
 ✓ ✓

Microsoft

Access
 ✓

P
O

W
E
R

P
L
A

T
F
O

R
M

Power BI

and DAX
 ✓ ✓ ✓ ✓

Power

Apps
 ✓ ✓

Power

Automate
 ✓ ✓ ✓ ✓

S
Q

L

S
E
R

V
E
R

Reporting

Services
 ✓ ✓ ✓ ✓

Report

Builder
 ✓ ✓ ✓

Integration

Services
 ✓ ✓ ✓ ✓

Analysis

Services
 ✓ ✓

 C
O

D
I
N

G

L
A

N
G

U
A

G
E
S

SQL ✓ ✓ ✓ ✓

Visual C# ✓ ✓ ✓ ✓

Python ✓ ✓ ✓ ✓

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

