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CHAPTER 1 - INTRODUCTION TO DAX IN POWER BI

1.1 DAX in Power BI

In Power BI you can use the DAX (Data Analysis eXpressions) language to create calculated 
columns, measures and tables.  You can see an example of each below.

How DAX is Used 1 – Calculated Columns

A calculated column is like a formula in an Excel table.  The results of a calculated column are stored 
in the data model.

As we will see in this manual, a calculated column is evaluated for each row of a table; DAX uses 
the row context to access the correct values for each separate calculation.

How DAX is Used 2 – Measures

A measure is a formula which calculates a value when you place it in a visual.  The visual provides 
a filter context which tells the measure which values it can use in the calculation.

This calculated column 
gives the value for each 
row of a sales table by 
multiplying the price of 
an item by the quantity 
sold.

This measure multiplies the price 
of an item by the quantity sold for 
each row of a sales table, then 
sums the results.

When we place the measure in a 
visual (a matrix in this case) the 
measure is calculated for each 
data point in the visual.

The filter context controls which 
values the measure can access.  
This cell gives the total sales 
value for products in the Water 
environment sold in the South 
West region.
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How DAX is Used 3 – Calculated Tables

Although most of the tables in your Power BI data model will be created by importing data, you can 
also use DAX to calculate tables.  It’s common to use this technique to create custom calendars.

Choosing the Type of Calculation

Power BI provides several ways to create calculated columns, measures and tables.  One way is to 
click the relevant tool on the Home tab of the ribbon while in the Data view.

Where Else is DAX Used?

In addition to Power BI, you can write DAX in the following applications:

Application Description
Power Pivot Power Pivot is an add-in for Excel which allows you to combine data from 

multiple sources and present this in a pivot table or chart.

SQL Server Analysis Services 
(SSAS) Tabular

SSAS Tabular Model allows you to combine data from lots of different data 
sources, apply security to it to control who sees what and then allow 
employees of your organisation to share the resulting data model.

This DAX expression creates a 
calculated table which contains 
a range of dates related to the 
sales in our database.

The Calculations group on the Home tab of the ribbon has 
a button for each type of DAX calculation.

Select the Data view tool on the left of the Power BI window.
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1.2 The Construct-a-Creature Database

This courseware uses data from the (fictitious) Wise Owl subsidiary Construct-a-Creature (a retail 
chain loosely modelled on Build-a-Bear, but with a wider range of animals available for purchase).

The Tables and Relationships

You can see the tables and relationships of the database in the diagram below:

There are four tables representing a geographical dimension to do with where sales took place.  These tables give 
the shopping centre, type of centre, town and region.

There are also four tables representing a product dimension.  These give 
details of the product sold (for example, a frog is an amphibian which 
lives in a fresh water habitat in a watery environment).

The Sales table stores how many 
of each product were sold in each 
transaction.
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1.3 Getting Help with DAX

The amount of help available for DAX both within Power BI and from third parties has increased 
dramatically since the product was first released.

Getting Help within Power BI

You’ll see various popups appear to help you as you write DAX in Power BI.

Other Sources of Help

You can find more descriptive help for DAX on a range of websites, as shown in the table below:

Website Description URL
Microsoft DAX 
Reference

Microsoft’s official documentation for DAX 
functions.  It’s somewhat dry but a useful 
technical reference.

https://learn.microsoft.com/en-us/dax/

Power BI 
Community

A Microsoft forum in which you can post 
questions about any aspect of Power BI and 
rely on other members to provide answers.

https://community.fabric.microsoft.com/
t5/Microsoft-Power-BI-Community/ct-
p/powerbi

SQLBI A third-party site maintained by Marco Russo 
and Alberto Ferrari.  The site contains lots of 
free resources to help you with DAX.

https://www.sqlbi.com/

DAX Guide A third-party alternative to Microsoft’s DAX 
Reference created by the Italians.  This site 
fleshes out the detail of DAX functions and 
provides links to helpful articles which 
describe in more detail how the functions 
work.

https://dax.guide/

Wise Owl The Wise Owl website contains lots of free 
resources including videos, blogs and 
exercises to help you with learning DAX.

https://www.wiseowl.co.uk/resources/

When you use a DAX function, a 
popup shows you a description of 
what it does and which parameters 
you need to fill in.

The Intellisense list helps you to 
pick functions and column names 
to save on typing.

https://learn.microsoft.com/en-us/dax/
https://community.fabric.microsoft.com/t5/Microsoft-Power-BI-Community/ct-p/powerbi
https://community.fabric.microsoft.com/t5/Microsoft-Power-BI-Community/ct-p/powerbi
https://community.fabric.microsoft.com/t5/Microsoft-Power-BI-Community/ct-p/powerbi
https://www.sqlbi.com/
https://dax.guide/
https://www.wiseowl.co.uk/resources/
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CHAPTER 2 - BASIC CALCULATED COLUMNS

2.1 Calculated Columns

A calculated column is a type of calculation you can create using DAX in Power BI.  This chapter 
shows you the basics of writing DAX using calculated columns.

Key Features of Calculated Columns

You can see some of the key features of calculated columns in the table below:

Feature Description
Created in data tables You create a calculated column in a table in the data model.  The calculated 

column can refer directly to any column in the same table.

Calculated immediately A calculated column produces its results as soon as you enter it.  The values 
are updated whenever the data model is refreshed.

Stores data in the model A calculated column stores its results in the data model.  Each calculated 
column you create increases the storage space required by the model.

Uses row context The expression in a calculated column is evaluated for each row in the table.  
The row context provides the expression with access to values on the same 
row in the table.

Creating a Calculated Column

You can create a calculated column in any of the three Power BI views but, if you want to see the 
results of your calculation, it’s best to select the Data view.

Select the Data view button on the left of the Power 
BI window.

You can right-click on any column in the table and 
choose New column to add a calculated column.

You can choose New column from the 
Table tools or Home tabs of the ribbon 
to add a calculated column.

You can right-click the table in the Data 
panel and choose New column to add a 
calculated column.
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Entering a Formula

After choosing to create a calculated column you can enter your DAX code in the formula bar below 
the ribbon.  The example below divides one column by another to create a new value:

1) Start by giving the column a sensible name.

2) To reference a column in the same table, simply begin typing the column name.

3) Type in an operator then reference the next column.

4) Press  Enter  to commit the formula.

Your calculated column will appear in the table in the Data pane with a special symbol to indicate its 
status.

Change the text on the left of the 
equals sign to rename the column.

As you type, the Intellisense list will filter the 
list of matching column and function names.

Highlight the item you want to insert and 
press  Tab  to insert it into the formula.

You can use spaces in a DAX formula to make it more readable.  
Here we’ve added spaces around the multiply operator.

You can also click the tick 
to commit the formula.

When you complete the formula, DAX calculates 
an answer for each row of the table.

This symbol indicates that 
the column is a calculated 
column.
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Calculated Column Properties

Once you’ve created a calculated column, you can modify it in the same way as any other column 
in your data model, as shown in the diagram below.

Using Calculated Columns in Visuals

You can use a calculated column to populate visuals in your report, just as for any other column in 
your data model.

You can change the default 
aggregation function used 
when you add the column to 
a visual using this drop-down 
list.

You can apply formatting to the column 
using these tools.

You can assign a data category to the column 
using this drop-down list.

Select the column in the 
Data pane.  You can then 
use the Column tools tab 
in the ribbon to modify its 
properties.

If the calculation produces 
text, you can use it to 
populate category fields in a 
visual.  Here we’ve used a 
calculated column called 
Centre Size to group the 
values in a chart.

You can assign numeric 
calculated columns to value 
fields in a visual.  Here 
we’re using the Sale Value 
calculated column to create 
a sum of sale value.
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2.2 Referencing Columns and Tables

This section shows you various ways to refer to columns and tables in your DAX formulae.

Qualifying Column Names

When you select a column name from the Intellisense list, it will be automatically qualified with the 
name of the table to which it belongs.  You don’t have to include the table name, however.

Although you don’t always have to include the table name when referencing a column, it makes 
sense to do so for the following reasons:

• If you always include the table name you don’t have to remember when it is or isn’t required.

• It allows you to spot when you’re referring to a column as opposed to, say, a measure.

• When a column name exists in multiple tables it makes the reference unambiguous.

Table Names

If the name of a table contains spaces, or it conflicts with another DAX keyword, you must enclose 
the table name in single quotes.

You can always enclose a table name in single quotes, even when it isn’t required.Wise 
Owl’s 
Hint

These two formulae 
give the same result.

Sales Table must be enclosed in 
single quotes due to the space in 
the table name.
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Referencing Columns in Other Tables

In a calculated column you can only directly reference other columns which belong to the same table.  
This is a problem when your calculation needs to refer to columns in other tables!

The Related Function

The key to solving the above problem is that the Product and Sales tables have a relationship.  This 
allows us to use the RELATED function to reference a column in a related table.

You can reference columns from a table at the 1 end of a relationship, regardless of how many steps 
it takes.  In our model, the Sales table sits at the many end of every relationship:

We’d like to create a calculated column in the 
Sales table which multiplies the Quantity by 
the ProductionCost in the Product table.

When we reference the ProductionCost 
column directly, the formula results in an 
error.

We can successfully reference 
the ProductionCost column by 
using the RELATED function.

A calculated column in 
the Sales table can 
reference any other 
column in the data 
model using the 
RELATED function.

In the Sales table you 
could return the 
RegionName with this 
formula:

=RELATED(
Region[RegionName]
)
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2.3 Editing DAX Code

Although you can write a DAX formula as a continuous stream of code, there are several things you 
can do to make your code more readable.

Multiple Lines and Indenting

You can break a formula onto multiple lines and add tab spaces to make it more readable.  You can 
use the following keys to add new lines and indenting to a formula:

Key What it does

 Shift  +  Enter  or  Alt  +  Enter Adds a new line, and a tab level if appropriate.

 Tab  Indents the highlighted lines one tab space.

 Shift  +  Tab  Outdents the highlighted lines one tab space.

You can see an example of a formula with new lines and indenting in the diagram below:

It’s not important to understand what the code in this section does – instead, focus 
on the techniques used to make it more readable.

Wise 
Owl’s 
Hint

Laying out a formula 
like this makes it very 
difficult to work with!

When you use a function 
(in this case DIVIDE), 
open the round brackets 
then start a new line and 
add a tab space.

Close the brackets for a 
function at the same 
indent level as the line 
on which the brackets 
were opened.  Use the 
vertical grey lines to help 
you put the brackets in 
the right place.

Each new function that 
you use should have its 
arguments indented one 
extra tab level.

All of the arguments for 
a single function should 
be at the same tab level.

Use a comma at the end 
of a line to separate one 
argument from the next.
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Comments

You can use comments to annotate your code.  You can add a comment at the end of any line after 
the = sign in a formula.

Keyboard Shortcuts

You can use a range of keyboard shortcuts to help you edit your DAX code.  You can see some of 
these in the table below:

Key What it does

 Ctrl  +  G  Goto the specified line number.

 Alt  +  ↑  /  Alt  +  ↓  Move the line of code up / down.

 Shift  +  Alt  +  ↑  /  Shift  +  Alt  +  ↓  Copy the line of code up / down.

 Ctrl  +  Shift  +  \  Jump to the paired bracket.

 Alt  +  Left mouse click  Add a text cursor at the clicked position.

 Ctrl  +  L Select the line of code.

 Ctrl  +  Shift  +  L  Select all occurrences of the current selection.

 Ctrl  +  F2 Select all occurrences of the current word.

 Ctrl  +  /  Comment/uncomment the line of code.

 Ctrl  +  =  /  Ctrl  + -  Zoom in / zoom out.

 Ctrl  +  Space Bar Show the Intellisense list.

 Ctrl  +  I  Show and hide tooltips.

 Ctrl  +  J Expand and collapse the formula bar.

You can type // to begin adding 
a comment, followed by the 
comment text.

You can also begin a comment 
using -- rather than //.

Start a multi-line comment with 
/* and end it with */ as shown 
here.
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